

System Identification of A Drone

Name: David (王琮文) Student ID: R09522848 National Taiwan University June 02, 2022

Contents

Tune the drone until stable (PID Control)

Model order / model estimation

Mixed-sensitivity H∞ synthesis method for robust control loop-shaping design

Inner-loop control

Drone and remote control

Introduction

Data Acquisition

Controls

Outer loop

PID Control

- 4 sets of PID Control:
 - 1. Roll
 - 2. Pitch
 - 3. Yaw
 - 4. Height
- Each set has two cascaded PID controllers: for example: PID control for roll ϕ and roll rate $\dot{\phi}$

PID Control

Speed 1x

Introduction

Problem Statement

Outer loop

System	Identification	of	А	Drone
--------	----------------	----	---	-------

System Identification

 However, yaw is estimated simply by two IMU sensors, so only a 3-input 3-output system is considered.

- Control Input (from a remote control): Roll, Pitch, Height
- System Output: Roll, Pitch, Height
- Sample time: 0.005 seconds

System Identification

- Input-Output Data
- MISO System Identification
- MIMO System Identification

Input-Output Data

Speed 2x

System Identification

Input-Output Data

- MISO System Identification
- MIMO System Identification

MISO System Identification

Case 1

- Control Input (from a remote control): Roll, Pitch, Height
- System Output: Roll

Case 2

- Control Input (from a remote control): Roll, Pitch, Height
- System Output: Pitch

Case 3

- Control Input (from a remote control): Roll, Pitch, Height
- System Output: Height

MISO System Identification

Case 1

- Control Input: Roll, Pitch, Height
- System Output: Roll

Note:

AIC: To minimize $\left\{ \log(V) + \frac{2d}{N} \right\}$

where V is the loss function, d is the total number of parameters in the structure in question, and N is the number of data points used for the estimation

Procedure

- 1) Compute **loss functions V** for single-output ARX models.
- 2) Compute the normalized Akaike's Information Criterion (AIC) value.
- 3) Select model order for single-output ARX models.
- 4) Estimate the **ARX Model** by using least squares.

MISO System Identification: Case 1

- Control Input: Roll, Pitch, Height
- System Output: Roll
- Discrete-time ARX model: A(z)y(t) = B(z)u(t) + e(t) $A(z) = 1 - 1.202 z^{-1} + 0.3244 z^{-2} + 0.1292 z^{-3} - 0.1059 z^{-4}$ $B1(z) = 0.06479 - 0.07467 z^{-1} + 0.1456 z^{-2}$ $B2(z) = 0.02157 - 0.01912 z^{-1}$ $B3(z) = -0.4842 + 0.8863 z^{-1} - 0.4018 z^{-2}$
- Fit to estimation data: 94.1%
- Akaike's Final Prediction Error: 5.697e-05

MISO System Identification: Case 2

- Control Input: Roll, Pitch, Height
- System Output: Pitch
- Discrete-time ARX model: A(z)y(t) = B(z)u(t) + e(t) $A(z) = 1 - 1.106 z^{-1} + 0.1053 z^{-2} + 0.1307 z^{-3}$ $B1(z) = -0.001201 + 0.005909 z^{-1}$ $B2(z) = 0.07366 z^{-1} + 0.04504 z^{-2}$ $B3(z) = -0.1496 z^{-1} + 0.149 z^{-2}$
- Fit to estimation data: 94.4%
- Akaike's Final Prediction Error: 6.356e-05

MISO System Identification: Case 3

- Control Input: Roll, Pitch, Height
- System Output: Height
- Discrete-time ARX model: A(z)y(t) = B(z)u(t) + e(t) $A(z) = 1 - 0.9646 z^{-1} + 0.00499 z^{-2} - 0.02892 z^{-3}$ $B1(z) = -0.0008751 z^{-2} - 0.09193 z^{-3} + 0.07976 z^{-4}$ $B2(z) = -0.0563 + 0.06576 z^{-1}$ $B3(z) = -0.162 z^{-2} + 0.1737 z^{-3}$
- Fit to estimation data: 94.0%
- Akaike's Final Prediction Error: 0.0008837

System Identification

- Input-Output Data
- MISO System Identification
- MIMO System Identification

Estimation Model

- 1) Estimate parameters of **ARX** model.
- 2) Estimate parameters of **ARMAX** model using time-domain data.
- 3) Estimate **Box-Jenkins (BJ)** polynomial model using time domain data.
- 4) ARX model estimation using four-stage instrumental variable method (iv4).
- 5) Estimate output-error (OE) polynomial model using time-domain data.
- 6) Estimate **state-space** model using **subspace** method with time-domain data.

Note: Assume the same order of the above model order of A = 4, order of B = 3.

four-stage instrumental variable method

- The first stage uses the arx function.
- The resulting model generates the instruments for a second-stage IV estimate.
- The residuals obtained from this model are modeled as a high-order AR model.
- At the fourth stage, the input-output data is filtered through this AR model and then subjected to the IV function with the same instrument filters as in the second stage.

Frequency Response

Frequency Response

Transfer Function Coefficients

- Input = Roll
- Output = Roll
- Assume No Delay time

	b 0	b1	b2	a0	a1	a2	a3	a4
ARX	0.06505	-0.07508	-0.145	1	- 1.211	0.3283	0.1454	-0.1193
BJ	0.06323	-0.09669	0.1436	1	-1.658	1.028	- 0.1213	- 0.1327
ARMAX	0.06759	- 0.1041	0.1448	1	-1.637	0.9694	-0.07756	-0.1405
OE	0.0486	-0.08014	0.1594	1	0.1594	0.7712	-0.0705	- 0.1056

What Is Residual Analysis?

- **Residuals** are differences between the one-step-predicted output from the model and the measured output from the validation data set.
- According to the **whiteness test criteria**, a good model has the residual autocorrelation function inside the confidence interval of the corresponding estimates, indicating that the residuals are uncorrelated.
- According to the **independence test criteria**, a good model has residuals uncorrelated with past inputs. Evidence of correlation indicates that the model does not describe how part of the output relates to the corresponding input.

Confidence Interval

- The confidence interval corresponds to the range of residual values with a specific probability of being statistically insignificant for the system.
- For example, for a 99.7% confidence interval, the region around zero represents the range of residual values that have a 99.7% probability of being statistically insignificant.

Correlation Test for iv4

Correlation Test for OE

Unstable Models

- Unstable models: iv4 and OE model
- The iv4 model has unstable poles at z = -2.287, 1.03
- The OE model has unstable poles at: z = 1.000001

iv4 Model

OE Model

System Identification of A Drone

Correlation Test for n4sid

Correlation Test for ARMAX

Correlation Test for BJ

Correlation Test for ARX

Discussion

- The ARX model is estimated using the **regularization** kernel.
- Estimate parameters of ARX, ARIX, AR, or ARI model.
- Estimate parameters of **ARMAX**, ARIMAX, ARMA, or ARIMA model using timedomain data.

Model Validation

Model Validation

Conclusion

• Stable models (better results):

ARX, ARMAX, and BJ model,

and the state-space model (n4sid) is good, too.

• Unstable models: iv4 and OE model

Outer-loop control

Outer-loop Control

Outer loop

System	Identification	of A Drone
--------	----------------	------------

• Design a controller that minimizes the H_{∞} norm of the weighted closed-loop transfer function M(s).

$$M(s) = \begin{bmatrix} W_1 S \\ W_2 K S \\ W_3 T \end{bmatrix},$$

• For the controller K

$$||S||_{\infty} \le \gamma |W_{1}^{-1}|$$
$$||KS||_{\infty} \le \gamma |W_{2}^{-1}|$$
$$||T||_{\infty} \le \gamma |W_{3}^{-1}|.$$

