Vibration Suppression of An Optical Table

Tsung-Wun Wang Advisor: Fu-Cheng Wang

Department of Mechanical Engineering National Taiwan University Taipei, Taiwan

June 2022

ii

Abstract

Vibration control in optical tables is critical for precision applications, necessitating careful design to minimize disturbances. This paper introduces disturbance response decoupling (DRD), focusing on its application to optical table designs, from quarter and half structures to full tables. Our simulations of DRD control strategies demonstrate their effectiveness in decoupling exogenous disturbances and significantly reducing vibrations by implementing suitable stabilizing controllers.

As we extend the optical table design to half and full sizes, we find that the original DRD strategy improves outputs for only one specific disturbance per controller. Therefore, modifications are needed to generalize the relationship between all disturbances and outputs. Consequently, we rename the original DRD architecture as Input DRD (IDRD) and propose two additional strategies: Output DRD (ODRD) and an integrated approach called Input-Output DRD (IODRD). Simulation results indicate substantial decoupling effects and notable vibration reduction. These findings suggest a robust framework for enhancing optical table performance under varied conditions. Future experiments will be designed to validate the ODRD and IODRD strategies.

Keywords: Disturbance Response Decoupling (DRD), Vibration Control, Optical Table, Output DRD (ODRD), Input-Output DRD (IODRD)

Abstract

ii

Contents

Al	bstrac	et			i
Li	st of]	Figures			vii
Li	st of '	Tables			xi
Al	bbrev	iations	and Acronyms		xiii
No	otatio	n			XV
1	Rela	ated Wo	ork		1
	1.1	Linear	Fractional Transformation	•	1
2	Exp	erimen	tal Setup		3
	2.1	Comp	onents in An Optical Table	•	3
		2.1.1	Vertical Vibration Machine	•	3
		2.1.2	Linear Spring	•	3
		2.1.3	Piezoelectric Actuator	•	5
		2.1.4	Voice Coil Motor	•	7
		2.1.5	Accelerometer	•	7
		2.1.6	Linear Variable Differential Transformer	•	9
		2.1.7	Load Cell		11
		2.1.8	Multifunction I/O Device		13

3	Qua	rter Table	15
	3.1	Dynamics Equations	15
	3.2	Controller Design	17
		3.2.1 Design of \tilde{U}_2	17
		3.2.2 Design of K_1	17
	3.3	Simulation	17
		3.3.1 Vibration Reduction	20
4	Half	f Table	23
	4.1	Dynamics Equations	23
	4.2	Controller Design	24
		4.2.1 Design of \tilde{U}_2	24
		4.2.2 Design of K_1	24
	4.3	Simulation - Maximize The Vibration Reduction without Con-	
		strained Stroke of Piezo Actuator	26
		4.3.1 Vibration Reduction	29
	4.4	Simulation - Maximize The Vibration Reduction with Limited	
		Stroke of Piezo Actuator	29
		4.4.1 Vibration Reduction	30
5	Full	Table	35
	5.1	Dynamics Equations	35
	5.2	Controller Design	38
		5.2.1 Design of \tilde{U}_2	38
		5.2.2 Design of K_1	38
	5.3	Simulation	38
		5.3.1 Vibration Reduction	41
6	Dist	urbance Response Decoupling	43
	6.1	General Control Configuration	43
	6.2	Review of Controller Parameterization	45

	6.3	Input	Disturbance Response Decoupling (IDRD)	46
		6.3.1	Q-Parameterization (Youla)	46
		6.3.2	Decoupling Effect	49
	6.4	Outpu	t Disturbance Response Decoupling (ODRD)	52
		6.4.1	Q-Parameterization (Youla)	52
		6.4.2	Decoupling Effect	53
7	Out	put DR	D Applied to A Half Table	57
	7.1	Outpu	t Disturbance Response Decoupling (ODRD)	57
	7.2	Dynar	nic Equations	59
	7.3	Simula	ation	62
		7.3.1	Controller Design	62
		7.3.2	First ODRD	63
		7.3.3	Second ODRD	64
		7.3.4	Hybrid ODRD	64
8	Inpu	ıt-Outp	out DRD Applied to A Half Table	67
	8.1	Input-	Output Disturbance Response Decoupling (IODRD)	67
	8.2	Dynar	nic Equations	69
	8.3	Simula	ation	70
		8.3.1	Controller Design	70
		8.3.2	First IODRD	71
		8.3.3	Second IODRD	72
		8.3.4	Third IODRD	73
		8.3.5	Fourth IODRD	74
9	Con	clusion	s	77
	9.1	Conclu	usions	77
	0.2	Future	Work	79

v

A	Design of Stabilizing Controller K ₁	79
	A.1 Design of K_1 - Quarter Table	79
	A.2 Design of K_1 - Half Table	79
	A.3 Design of K_1 - Full Table	80
B	Device Specification	81
Bil	bliography	87

List of Figures

1.1	Linear Fractional Transformation
2.1	Vertical Vibration Machine [1]
2.2	Compression Spring Ends [2] 5
2.3	Piezo Actuator P-844.20 [3] 6
2.4	Piezoelectric Amplifier E-663 [4]
2.5	Voice Coil Motor [5]
2.6	Typical Accelerometer Structure Diagram [6]. 8
2.7	Accelerometer 731A/P31 [7]
2.8	Cutaway View of An LVDT [8]
2.9	The transfer function of a typical LVDT [8]
2.10	Macro Sensors LVC-2500 [9]
2.11	Load Cell [10]
2.12	Wheatstone Bridge Configuration [10]. 12
2.13	Load Cell MLP-200 [11]
3.1	Quarter Table [12]
3.2	Bode Plot Of The Quarter Table
3.3	Exogenous Disturbances
3.4	Outputs of An Open-loop System
3.5	Annihilated Outputs 19
3.6	Response of One Piezo Actuator
3.7	Regulated Outputs of Open- and Closed-loop System 20

4.1	Half Table [12]	24
4.2	Bode Plot Of The Half Table	26
4.3	Exogenous Disturbances	27
4.4	Outputs of An Open-loop System	27
4.5	Annihilated Outputs	28
4.6	Response of Piezo Actuators	28
4.7	Regulated Outputs of Open- and Closed-loop System.	29
4.8	Exogenous Disturbances (Limited Piezo Actuators)	30
4.9	Annihilated Outputs (Limited Piezo Actuators)	31
4.10	Response of Piezo Actuators (Limited Piezo Actuators).	31
4.11	Regulated Outputs of Open- and Closed-loop System (Limited	
	Piezo Actuators).	32
5 1	Full Table [12]	37
5.2	Fun fable [12] Fxogenous Disturbances	30
5.2	Outputs of An Open-Joon System	40
5.4	Annihilated Outputs	40
5.5	Response of Piezo Actuators	41
5.6	Regulated Outputs of Open- and Closed-loop System	42
5.0	Regulated outputs of Open and closed loop System.	12
6.1	Open-loop System	44
6.2	General Control Configuration	44
6.3	Closed-loop System	44
6.4	Control Structure of IDRD	50
6.5	Control Structure of IDRD	50
6.6	Control Structure of ODRD	53
6.7	Control Structure of ODRD	54
71	Control Structure of ODRD	58
7.1	Half Table [12]	50
7.2	Exogeneus Disturbances	60
1.3		02

LIST OF FIGURES

Response of Piezo Actuators (1st ODRD)	63
Regulated Outputs of Open- and Closed-loop System (1st ODRD).	63
Response of Piezo Actuators (2nd ODRD)	64
Regulated Outputs of Open- and Closed-loop System (2nd ODRD).	64
Response of Piezo Actuators (Hybrid ODRD)	65
Regulated Outputs of Open- and Closed-loop System (Hybrid	
ODRD)	65
Control Structure of IODRD	68
Exogenous Disturbances	70
Response of Piezo Actuators (1st IODRD)	71
Regulated Outputs of Open- and Closed-loop System (1st IODRD).	71
Response of Piezo Actuators (2nd IODRD)	72
Regulated Outputs of Open- and Closed-loop System (2nd IO-	
DRD)	72
Response of Piezo Actuators (3rd IODRD)	73
Regulated Outputs of Open- and Closed-loop System (3rd IODRD).	73
Response of Piezo Actuators (4th IODRD)	74
Regulated Outputs of Open- and Closed-loop System (4th IODRD).	74
	Response of Piezo Actuators (1st ODRD).Regulated Outputs of Open- and Closed-loop System (1st ODRD).Response of Piezo Actuators (2nd ODRD).Regulated Outputs of Open- and Closed-loop System (2nd ODRD).Regulated Outputs of Open- and Closed-loop System (HybridODRD).Control Structure of Open- and Closed-loop System (HybridODRD).Control Structure of IODRDExogenous DisturbancesResponse of Piezo Actuators (1st IODRD).Regulated Outputs of Open- and Closed-loop System (1st IODRD).Regulated Outputs of Open- and Closed-loop System (1st IODRD).Regulated Outputs of Open- and Closed-loop System (1st IODRD).Response of Piezo Actuators (2nd IODRD).Response of Piezo Actuators (2nd IODRD).Regulated Outputs of Open- and Closed-loop System (2nd IO-DRD).Response of Piezo Actuators (3rd IODRD).Response of Piezo Actuators (3rd IODRD).Response of Piezo Actuators (3rd IODRD).Response of Piezo Actuators (4th IODRD).

LIST OF FIGURES

List of Tables

3.1	Symbol Meanings of The Quarter Table	16
3.2	Parameters in The Quarter Table	18
3.3	Vibration Reduction of z_s	21
3.4	Vibration Reduction of z_u	21
4.1	Symbol Meanings of The Half Table	25
4.2	Signal Representation of The Half Table	25
4.3	Parameters in The Half Table	25
4.4	Vibration Reduction of The Regulated Outputs	31
4.5	Vibration Reduction of The Regulated Outputs (Limited Piezo	
	Actuators).	33
5.1	Symbol Meanings of The Full Table	37
5.2	Signal Representation of The Full Table	37
5.3	Parameters in The Full Table	39
5.4	Vibration Reduction of The Regulated Outputs	42
7.1	Symbol Meanings of The Half Table	61
7.2	Signal Representation of A Simplified Half Table	61
7.3	Parameters in The Half Table	61
7.4	Vibration Reduction of The Regulated Output z_s	66
7.5	Vibration Reduction of The Regulated Output z_{ϕ}	66
8.1	Signal Representation of A Simplified Half Table	75

8.2	Vibration Reduction of The Regulated Output z_s	75
8.3	Vibration Reduction of The Regulated Output z_{ϕ}	75
B .1	Specification of The Vertical Vibration Machine	82
B .2	Specification of P-844.20, Physik Instrumente [3]	82
B .3	Specification of E-663, Physik Instrumente [4]	82
B .4	Specification of AVM35-HF-7, Akribis [13]	83
B.5	Specification of OPA544, Texas Instruments [14]	83
B.6	Specification of Accelerometer 731A/P31, Wilcoxon Research Inc.	
	[7]	83
B .7	Specification of PR 750-050, Macro Sensors [9]	84
B. 8	Specification of LVC-2500, Macro Sensors [9].	84
B .9	Specification of MLP-200, Transducer Techniques [11]	84
B .10	Specification of NI PCI-6259 [15]	84
B .11	Specification of NI PCIe-6323 [15].	85

Abbreviations and Acronyms

- LFT Linear Fractional Transformation
- DRD Disturbance Response Decoupling
- IDRD Input Disturbance Response Decoupling
- ODRD Output Disturbance Response Decoupling
- IODRD Input-Output Disturbance Response Decoupling

Abbreviations and Acronyms

Notation

Symbol	Meaning
w	Exogenous disturbance
z	Regulated output
y	Measured output
u	Actuator input
P	Generalized plant
P_{11}	Sub-plant of the generalized plant P
\hat{P}_{21}	The Laplace transform of the sub-plant P_{21}
K_1	A set of stabilizing controller
$K_1^{w_j}$	A stabilizing controller designed for the <i>j</i> -th exogenous disturbance w_j
\tilde{U}_2	A set of annihilated transfer function
$ ilde{U}_2^{w_{_j}}$	An annihilated transfer function designed for the j -th exogenous disturbance w_j
$T_{w_1 \to z}$	A transfer function from the input w_1 to the output z

Notation

xvi

Chapter 1

Related Work

1.1 Linear Fractional Transformation

Consider a multi-input multi-output (MIMO) system, where P is the generalized plant model, K is the controller, u is the actuator input, w is the exogenous disturbance, z is the regulated output, y is the measured output. The general control configuration can be represented by the following linear fractional transformation (LFT), as shown in Figure 1.1.

$$\begin{pmatrix} z \\ y \end{pmatrix} = \begin{pmatrix} P_{11} & P_{12} \\ P_{21} & P_{22} \end{pmatrix} \begin{pmatrix} w \\ u \end{pmatrix}$$
(1.1)

If we take Laplace transform of (1.1), then we have the following form:

$$\begin{pmatrix} \hat{z} \\ \hat{y} \end{pmatrix} = \begin{pmatrix} \hat{P}_{11} & \hat{P}_{12} \\ \hat{P}_{21} & \hat{P}_{22} \end{pmatrix} \begin{pmatrix} \hat{w} \\ \hat{u} \end{pmatrix}$$
(1.2)

The generalized plant of (1.2) can be further partitioned into the following form:

Figure 1.1: Linear Fractional Transformation

$$\begin{pmatrix} \hat{z}_{1} \\ \hat{z}_{2} \\ \hat{y} \end{pmatrix} = \begin{pmatrix} \hat{P}_{11_{1}} & \hat{P}_{11_{2}} & \hat{P}_{12} \\ \hat{P}_{21_{1}} & \hat{P}_{21_{2}} & \hat{P}_{22} \end{pmatrix} \begin{pmatrix} \hat{w}_{1} \\ \hat{w}_{2} \\ \hat{u} \end{pmatrix}$$
(1.3)

In the following chapters, this concept will be applied to a decoupling strategy called disturbance response decoupling (DRD) [16].

Chapter 2

Experimental Setup

2.1 Components in An Optical Table

2.1.1 Vertical Vibration Machine

The disturbance z_r in my experiment is generated by a vertical vibration machine. A ball screw servo motor is installed inside the machine to transform the motor axel rotation to an axial movement. This axial movement represents the disturbance z_r . For details, please refer to Figure 2.1 and Table B.1.

2.1.2 Linear Spring

The spring comes in varieties – the compression spring, the extension spring, the torsion spring, etc. – all of which serve different and specific functions. For compression springs there are two basic end type options – closed or open, with both options having either ground or not ground ends, as shown in Figure 2.2. Closed and ground compression springs are the most common and sit the most flat because grinding process is applied to the ends of this kind of springs. Thus closed and ground compression springs are chosen as my components in my experiment, and the spring constant can be calculated from the dimensions of the compression springs:

2. Experimental Setup

Figure 2.1: Vertical Vibration Machine [1]

$$k = \frac{Gd^4}{8nD^3} \tag{2.1}$$

where G is transverse elastic modulus (N/mm^2) , d is material diameter (mm), n is number of active coils, D is coil mean diameter.

Hooke's law, discovered by the English scientist Robert Hooke in 1660, states that, for relatively small deformations of an object, the displacement or size of the deformation is directly proportional to the deforming force or load. Hooke's law can be formulated as:

$$F = -kx \tag{2.2}$$

where k is the spring constant, F is the force, and x is the length of extension/compression.

In the real world, however, springs are influenced by restoring forces and friction, and frictional forces will diminish the amplitude of oscillation until eventually the system is at rest. To make the entire model closer to the real model, springs can be modelled as:

Figure 2.2: Compression Spring Ends [2]

$$\theta = cs + k \tag{2.3}$$

where θ is the damped spring model in Laplace domain, c is damping ratio of the spring, and k is the spring constant.

2.1.3 Piezoelectric Actuator

The optical-table model needs active linear actuator to reduce the vibration from the disturbances. Because high resolution of the actuator is required, Physik Instrumente (PI) offers one kind of piezo actuator: P-844.20 (Figure 2.3). For details about P-844.20, please refer to Table B.2.

Besides, the voltage input of the selected piezo actuators should be amplified, so a piezo amplifier is required. The PI E-663 amplifier in Figure 2.4 has three low-noise amplifier channels for low-volt piezo actuators that input and output peak currents of 140 mA in a voltage range of -20 to +120 V. For details, please refer to Table B.3.

Figure 2.3: Piezo Actuator P-844.20 [3]

Figure 2.4: Piezoelectric Amplifier E-663 [4]

Figure 2.5: Voice Coil Motor [5]

2.1.4 Voice Coil Motor

A voice coil motor (VCM) is used to generate the force F_s on top of the mass m_s . The VCM consists of a permanent magnetic field assembly and a coil assembly, as shown in Figure 2.5. The current flowing through the coil assembly interacts with the permanent magnetic field and generates a force by Lorentz' force equation. The VCM are is commonly used for short travel paths where high acceleration and constant force is required, and Akribis's VCM AVM35-HF-7 meets our requirement. For details, please refer to Table B.4.

Besides, Texas Instruments has a high-voltage/high-current operational amplifier (OPA544) suitable for driving VCM. For details, please refer to Table B.5.

2.1.5 Accelerometer

An accelerometer is a device that measures the acceleration of a structure. As shown in Figure 2.6, an accelerometer comprises a spring, a seismic mass, and a displacement sensor arranged within a housing attached to a base. The relative displacement between the seismic mass and the base can be recorded by the

Figure 2.6: Typical Accelerometer Structure Diagram [6].

Figure 2.7: Accelerometer 731A/P31 [7]

displacement sensor expressed as [6]:

$$x_m - x_b = \frac{m}{k}a\tag{2.4}$$

where x_m is the displacement of the seismic mass, x_b is the displacement of the base, m is the seismic mass, k is the spring constant, and a is the acceleration we want to know.

Wilcoxon Sensing Technologies® poduces ultra-low frequency seismic accelerometers 731A/P31 Figure 2.7, which can measure the acceleration of my system. For details, please refer to Table B.6.

Figure 2.8: Cutaway View of An LVDT [8].

2.1.6 Linear Variable Differential Transformer

The linear variable differential transformer (LVDT), as shown in Figure 2.8, is a contactless linear position sensor converting the rectilinear motion of an object into a corresponding electrical signal. Friction-free operation, high resolution (infinite in theory), high linearity (0.5% or better), and high sensitivity are some of the important features of the LVDT devices.

Figure 2.9 shows the transfer function of a typical LVDT. The x-axis is the core displacement from the center. The y-axis is the amplitude of the output AC voltage. At the origin (x = 0), the output is ideally zero. As the core is moved off center in either direction, the amplitude of the output increases linearly with the core displacement. This, LVDT has high linearity in the linear range.

To measure some displacements, such as z_s and z_u in my experiment, PR 750 LVDTs offered by Macro Sensors are the suitable sensors. Also, to support this LVDT sensors, we connect a single channel signal conditioner, Macro Sensors LVC-2500 (Figure 2.10), that operates on 10-30 Volts DC power. For details, please refer to specification of LVDTs Table B.7 and the corresponding amplifier Table B.8.

Figure 2.9: The transfer function of a typical LVDT [8].

Figure 2.10: Macro Sensors LVC-2500 [9].

Figure 2.11: Load Cell [10].

2.1.7 Load Cell

Load cell is a force sensor that converts a load or force acting on it into an electrical signal. One kind of load cells, strain gauge load cell as shown in Figure 2.11, works on the principle of changing electrical resistance as the conductor is being elastically deformed, and multiple strain gauges are used to set in a Wheatstone bridge configuration (balanced when no load is applied, shown in Figure 2.12) in order to achieve a very high degree of accuracy. The overall change in resistance across all four strain gauges can be determined by using Ohm's law [10]:

$$v_O = \left[\frac{R_3}{R_3 + R_4} - \frac{R_2}{R_1 + R_2}\right] v_{EX}$$
(2.5)

where v_O is the output voltage, and v_{EX} is the voltage excitation.

To measure some forces, such as F_s in my experiment, Transducer Techniques MLP-200 is a suitable force sensor, as shown in Figure 2.13. For details, please refer to Table B.9.

Figure 2.12: Wheatstone Bridge Configuration [10].

Figure 2.13: Load Cell MLP-200 [11].

2.1.8 Multifunction I/O Device

The National Instruments (NI) multifunction I/O device offers analog I/O, correlated digital I/O, 32-bit counters/timers, and analog and digital triggering. The device delivers low-cost, reliable DAQ capabilities in a wide range of applications from simple applications in laboratory automation, research, design verification/test, and manufacturing test. All sensors we used in the experiment are added to this NI device. For details, please refer to Table B.10 and Table B.11.

2. Experimental Setup

Chapter 3

Quarter Table

3.1 Dynamics Equations

A quarter-table model is used to study the dynamics of an optical table [1, 17]. Figure 3.1 illustrates the free body diagram, and its corresponding equations of motion can be derived as:

$$m_s \ddot{z}_s = F_s - \theta_2 (z_s - z_u) - \theta_3 (z_a - z_u)$$
(3.1)

$$m_u \ddot{z}_u = \theta_2 (z_s - z_u) + \theta_3 (z_a - z_u) - \theta_1 (z_u - z_r)$$
(3.2)

where each parameter is defined in Table 3.1. And the displacement output of z_a can be substituted by the transfer function γ :

$$z_a - z_s = \gamma u \tag{3.3}$$

Then, the equation (3.1), (3.2), and (3.3) can be formulated into LFT form in (1.3), where the exogenous disturbance w is $[z_r, F_s]^T$, the regulated output zis $[z_s, z_u]^T$, the measured output y is $[z_s, z_u]^T$. The actuator input u is a scalar because only one piezo actuator is used in the case the quarter table.

Table 3.1: Symbol Meanings of The Quarter Table

Symbol	Meaning
m_s	Sprung mass
m_u	Unsprung mass
F_s	Force applying on the sprung mass
$ heta_1$	A passive component connecting m_u and the platform
θ_2	A passive component connecting m_u and m_s
$ heta_3$	A passive component connecting m_u and the piezo actuator
z_s	Displacement of the sprung mass
z_u	Displacement of the unsprung mass
z_r	Displacement of the platform
z_a	Displacement output of the piezo actuator
γ	Transfer function from input voltage to the displacement $(z_a - z_s)$

Figure 3.1: Quarter Table [12]

3.2 Controller Design

3.2.1 Design of \tilde{U}_2

The annihilated output \tilde{U}_2 can be calculated from the inverse of \hat{P}_{21} in (1.2).

3.2.2 Design of K_1

The stabilizing controller K_1 is constructed by MATLAB nefsyn function, and $K_1^{w_1}$ and $K_1^{w_2}$ are shown in Appendix (A.1) and (A.2).

3.3 Simulation

After LFT form of the equations of motion is derived, the numerical model can be calculated by substituting all values in Table 3.2. Note that the passive components θ_j is the combination of a linear spring k_j and a damper c_j , where j = 1, 2, 3. Then we can generate two disturbances to simulate the vibrational situation. The disturbances w are given in equation (3.4) (3.5) and also shown in Figure 3.3. I plot the frequency response of the open-loop system and find that the transfer function $T_{u \to z_r}$ and $T_{u \to F_s}$ in bode plot (shown in Figure 3.2) has maximum values at around 12 and 13 Hz. Therefore, 12 and 13 Hz are chosen as the frequencies of two disturbance signals.

$$\begin{cases} z_r = 0.0002 sin(26\pi t) & (unit:m) \end{cases}$$
(3.4)

$$F_s = 20sin(24\pi t) \qquad (unit:N) \tag{3.5}$$

First, we observe the open-loop system of the quarter table, as shown in Figure 3.4.

The closed-loop system constructed by designing $\tilde{U}_2^{w_1}$, $\tilde{U}_2^{w_2}$, $K_1^{w_1}$, and $K_1^{w_2}$ has the following corresponding annihilated outputs \tilde{y}^{w_1} , \tilde{y}^{w_2} , as shown in Figure 3.5.

Also, because the purpose of the piezo actuator is to reduce the exogenous signal w, its output response matters in my simulation, as shown in Figure 3.6.

Symbol	Value	Unit
m_s	19.0322	kg
m_u	11.5250	kg
c_1	373.558	Ns/m
c_2	289.247	Ns/m
c_3	446.353	Ns/m
k_1	2.43584×10^5	N/m
k_2	2.02263×10^5	N/m
k_3	5.81508×10^5	N/m
γ	$\frac{0.0005662}{s+272.2}$	

Table 3.2: Parameters in The Quarter Table

Figure 3.3: Exogenous Disturbances
3.3. Simulation

Figure 3.5: Annihilated Outputs

Figure 3.6: Response of One Piezo Actuator

Figure 3.7: Regulated Outputs of Open- and Closed-loop System.

In my simulation, the maximum amplitude of $(z_a - z_s)$ is approximately 550 μ m.

3.3.1 Vibration Reduction

The importance of my research is to reduce the regulated outputs $z = [z_s, z_u]^T$, so, here, I compare the open-loop and closed-loop system in Figure 3.7.

For the duration from 100 to 120 seconds, the vibration reduction is significant when both controllers are open.

3.3. Simulation

	$K_1^{w_1}$ off	$K_1^{w_1}$ open
$K_1^{w_2}$ off	NA	46.7%
$K_1^{w_2}$ open	7.66%	63.0%

Table 3.3: Vibration Reduction of z_s

Table 3.4: Vibration Reduction of z_u

	$K_1^{w_1}$ off	$K_1^{w_1}$ open
$K_1^{w_2}$ off	NA	35.5%
$K_1^{w_2}$ open	7.08%	47.2%

Chapter 4

Half Table

4.1 **Dynamics Equations**

A half-table model is used to study the dynamics of an optical table [1, 17]. Figure 7.2 illustrates the free body diagram, and its corresponding equations of motion can be derived as:

$$m_s \ddot{z}_s = F_s - u_{p_1} - u_{p_2} \tag{4.1}$$

$$I_{\phi}\ddot{z}_{\phi} = T_{\phi} - u_{p_1}l_1 + u_{p_2}l_2 \tag{4.2}$$

$$m_{u_1}\ddot{z}_{u_1} = u_{p_1} - \theta_{1_1}(z_{u_1} - z_{r_1})$$
(4.3)

$$m_{u_2}\ddot{z}_{u_2} = u_{p_2} - \theta_{1_2}(z_{u_2} - z_{r_2}) \tag{4.4}$$

where u_{p_1} and u_{p_2} are defined as:

$$u_{p_1} = \theta_{2_1}(z_s + l_1 z_\phi - z_{u_1}) + \theta_{3_1}(z_{a_1} - z_{u_1})$$
(4.5)

$$u_{p_2} = \theta_{2_2}(z_s - l_2 z_\phi - z_{u_2}) + \theta_{3_2}(z_{a_2} - z_{u_2})$$
(4.6)

Figure 4.1: Half Table [12]

where each parameter is defined in Table 7.1. And the displacement output of z_a can be substituted by the transfer function γ :

$$z_{a_1} - z_s - l_1 z_\phi = \gamma u_1 \tag{4.7}$$

$$z_{a_2} - z_s + l_2 z_\phi = \gamma u_2 \tag{4.8}$$

Then, the above equations can be formulated into LFT form described in (1.3), where the signals w, z, u, y are defined in Table 4.2.

4.2 Controller Design

4.2.1 Design of \tilde{U}_2

The annihilated output \tilde{U}_2 can be calculated from the inverse of \hat{P}_{21} in (1.2).

4.2.2 Design of K_1

The stabilizing controller K_1 is constructed by MATLAB ncfsyn function, and $K_1^{w_1}$, $K_1^{w_2}$, $K_1^{w_3}$ and $K_1^{w_4}$ are shown in Appendix from (A.3) to (A.6).

Symbol	Meaning
m_s	Sprung mass
m_u	Unsprung mass
F_s	Force applying on the sprung mass
θ_{1_j}	A passive component connecting m_u and the platform, where $j = 1, 2$
θ_{2_j}	A passive component connecting m_u and m_s , where $j = 1, 2$
$ heta_{3_j}$	A passive component connecting m_u and the piezo actuator, where $j = 1, 2$
z_s	Displacement of the sprung mass
z_{u_j}	Displacement of the unsprung mass, where $j = 1, 2$
z_{r_j}	Displacement of the platform, where $j = 1, 2$
z_{a_j}	Displacement output of the piezo actuator, where $j = 1, 2$
γ_j	Transfer function from input voltage to the displacement $(z_{a_j} - z_s)$

Table 4.1: Symbol Meanings of The Half Table

Table 4.2: Signal Representation of The Half Table

Symbol	Signal Representation
Exogenous disturbance w	$\left[z_{r_1}, z_{r_2}, F_s, T_\phi\right]^T$
Regulated output z	$\left[z_s, z_\phi, z_{u_1}, z_{u_2}\right]^T$
Actuator input u	$[u_1, u_2]^T$
Measured output y	$\left[z_s, z_\phi, z_{u_1}, z_{u_2}\right]^T$

Symbol	Value	Unit
m_s	10.8090	kg
m_{u_1}	9.451	kg
m_{u_2}	12.630	kg
c_{1_j}	373.558	Ns/m
c_{2_j}	289.247	Ns/m
c_{3_j}	446.353	Ns/m
k_{1_j}	2.43584×10^5	N/m
k_{2_j}	2.02263×10^5	N/m
k_{3_j}	5.81508×10^5	N/m
l_1	0.225	m
l_2	0.225	m
γ	$\frac{0.0005662}{s+272.2}$	

Table 4.3: Parameters in The Half Table

Figure 4.2: Bode Plot Of The Half Table

4.3 Simulation - Maximize The Vibration Reduction without Constrained Stroke of Piezo Actuator

Note: We assume that the output of PZT is unlimited in this section.

After LFT form of the equations of motion is derived, the numerical model can be calculated by substituting all values in Table 7.3. Then we can generate some disturbances to simulate the vibrational situation. The disturbances w are given in equation (4.9), (4.10), (4.11) and (4.12) and also shown in Figure 4.3.

$$\begin{cases} z_{r_1} = 0.0001 sin(4.10\pi t) & (unit:m) \end{cases}$$
(4.9)

$$z_{r_2} = 0.0001 sin(6.72\pi t) \qquad (unit:m) \qquad (4.10)$$

$$F_s = 10sin(9.04\pi t)$$
 (unit: N) (4.11)

$$T_{\phi} = sin(5.90\pi t)$$
 (unit: N * m) (4.12)

First, we observe the open-loop system of the half table, as shown in Figure 4.4.

4.3. Simulation - Maximize The Vibration Reduction without Constrained Stroke of Piezo Actuator27

Figure 4.3: Exogenous Disturbances

Figure 4.4: Outputs of An Open-loop System

Figure 4.5: Annihilated Outputs

Figure 4.6: Response of Piezo Actuators

The closed-loop system constructed by designing $\tilde{U}_2^{w_i}$, and $K_1^{w_i}$, where i = 1, 2, 3, 4, has the following corresponding annihilated outputs \tilde{y}^{w_i} , as shown in Figure 4.9.

Also, because the purpose of the piezo actuator is to reduce the exogenous signal w, its output response matters in my simulation, as shown in Figure 4.10.

In my simulation, if only the steady state is considered, it can be observed that the maximum amplitude of $(z_a - z_s)$ is approximately 330 and 135 μ m for the first and second piezo actuator, respectively.

Figure 4.7: Regulated Outputs of Open- and Closed-loop System.

4.3.1 Vibration Reduction

The importance of my research is to reduce the regulated outputs z, so, here, I compare the open-loop and closed-loop system in Figure 4.7.

For the duration from 130 to 150 seconds, the vibration reduction is significant when four controllers are open. See Table 4.4 for more details.

4.4 Simulation - Maximize The Vibration Reduction with Limited Stroke of Piezo Actuator

Note: The output of PZT in this section is limited.

After LFT form of the equations of motion is derived, the numerical model can be calculated by substituting all values in Table 7.3. Then we can generate some disturbances to simulate the vibrational situation. The disturbances w are given in equation from (4.13) to (4.16) and also shown in Figure 4.8.

Figure 4.8: Exogenous Disturbances (Limited Piezo Actuators)

$$z_{r_1} = 0.0003 sin(1.8\pi t) \qquad (unit:m) \qquad (4.13)$$

$$z_{r_2} = 0.0003 sin(2.8\pi t) \qquad (unit:m) \qquad (4.14)$$

$$F_s = 8sin(10.0\pi t)$$
 (unit: N) (4.15)

$$T_{\phi} = sin(5.90\pi t)$$
 (unit : N * m) (4.16)

The closed-loop system constructed by designing $\tilde{U}_2^{w_i}$, and $K_1^{w_i}$, where i = 1, 2, 3, 4, has the following corresponding annihilated outputs \tilde{y}^{w_i} , as shown in Figure 4.9.

Also, because the purpose of the piezo actuator is to reduce the exogenous signal w, its output response matters in my simulation, as shown in Figure 4.10.

In my simulation, if only the steady state is considered, it can be observed that the maximum amplitude of $(z_a - z_s)$ is approximately 123 and 144 μ m for the first and second piezo actuator, respectively.

4.4.1 Vibration Reduction

The importance of my research is to reduce the regulated outputs z, so, here, I compare the open-loop and closed-loop system in Figure 4.11.

Table 4.4: Vibration Reduction of The Regulated Outputs

Figure 4.9: Annihilated Outputs (Limited Piezo Actuators)

Figure 4.10: Response of Piezo Actuators (Limited Piezo Actuators).

Figure 4.11: Regulated Outputs of Open- and Closed-loop System (Limited Piezo Actuators).

For the duration from 130 to 150 seconds, the vibration reduction is significant when four controllers are open. See Table 4.5 for more details.

4.4. Simulation - Maximize The Vibration Reduction with Limited Stroke of Piezo Actuator33

Table 4.5: Vibration Reduction of The Regulated Outputs (Limited Piezo Actua-
tors).

	z_s	z_{ϕ}	z_{u_1}	z_{u_2}
only $K_1^{w_1}$ open	0.92%	1.13%	-0.03%	0.00%
only $K_1^{w_2}$ open	2.65%	2.39%	0.01%	0.32%
only $K_1^{w_3}$ open	0.32%	0.27%	5.45%	4.08%
only $K_1^{w_4}$ open	3.94%	3.30%	0.49%	2.19%
All $K_1^{w_i}$ open $(i = 1, 2, 3, 4)$	8.03%	7.27%	5.96%	6.71%

4. Half Table

Chapter 5

Full Table

5.1 Dynamics Equations

A full-table model is used to study the dynamics of an optical table [1, 17]. Figure 5.1 illustrates the free body diagram, and its corresponding equations of motion can be derived as:

$$m_s \ddot{z}_s = F_s - u_{p_1} - u_{p_2} - u_{p_3} - u_{p_4}$$
(5.1)

$$I_{\theta}\ddot{z}_{\theta} = T_{\theta} + u_{p_1}l_f + u_{p_2}l_f - u_{p_3}l_r - u_{p_4}l_r$$
(5.2)

$$I_{\phi}\ddot{z}_{\phi} = T_{\phi} - u_{p_1}t_f + u_{p_2}t_f - u_{p_3}t_r + u_{p_4}t_r$$
(5.3)

$$m_{u_1}\ddot{z}_{u_1} = u_{p_1} - F_{r_1} \tag{5.4}$$

$$m_{u_2}\ddot{z}_{u_2} = u_{p_2} - F_{r_2} \tag{5.5}$$

$$m_{u_3} \ddot{z}_{u_3} = u_{p_3} - F_{r_3} \tag{5.6}$$

$$m_{u_4}\ddot{z}_{u_4} = u_{p_4} - F_{r_4} \tag{5.7}$$

where u_{p_j} , F_{r_j} , and D_j (j = 1, 2, 3, 4) are defined as:

$$u_{p_j} = \theta_{2_j} D_j + \theta_{3_j} (z_{a_j} - z_{u_j})$$
(5.8)

$$F_{r_j} = \theta_{1_j} (z_{u_j} - z_{r_j})$$
(5.9)

$$D_1 = z_s - l_f z_\theta + t_f z_\phi - z_{u_1}$$
(5.10)

$$D_2 = z_s - l_f z_\theta - t_f z_\phi - z_{u_2}$$
(5.11)

$$D_3 = z_s + l_r z_\theta + t_r z_\phi - z_{u_3}$$
(5.12)

$$D_4 = z_s + l_r z_\theta - t_r z_\phi - z_{u_4}$$
(5.13)

where each parameter is defined in Table 5.1. And the displacement output of z_{a_j} can be substituted by the transfer function γ :

$$z_{a_1} - z_s + l_f z_\theta - t_f z_\phi = \gamma u_1$$
 (5.14)

$$z_{a_2} - z_s + l_f z_\theta + t_f z_\phi = \gamma u_2 \tag{5.15}$$

$$z_{a_3} - z_s - l_r z_\theta - t_r z_\phi = \gamma u_3 \tag{5.16}$$

$$z_{a_4} - z_s - l_r z_\theta + t_r z_\phi = \gamma u_4$$
(5.17)

Then, the above equations can be formulated into LFT form described in (1.3), where the signals w, z, u, y are defined in Table 5.2.

5.1. Dynamics Equations

Figure 5.1: Full Table [12]

Symbol	Meaning
m_s	Sprung mass
m_u	Unsprung mass
F_s	Force applying on the sprung mass
$ heta_{1_j}$	A passive component connecting m_u and the platform, where $j = 1, 2$
θ_{2_j}	A passive component connecting m_u and m_s , where $j = 1, 2$
θ_{3_j}	A passive component connecting m_u and the piezo actuator, where $j = 1, 2$
z_s	Displacement of the sprung mass
z_u	Displacement of the unsprung mass
z_r	Displacement of the platform
z_a	Displacement output of the piezo actuator
γ	Transfer function from input voltage to the displacement $(z_a - z_s)$
CHECKED!!!	to be checked !!!!!!!!

Table 5.2: Signal Representation of The Full Table

Symbol	Signal Representation
Exogenous disturbance w	$[F_s, T_{\theta}, T_{\phi}, z_{r_1}, z_{r_2}, z_{r_3}, z_{r_4}]^T$
Regulated output z	$[z_s, z_{\theta}, z_{\phi}, z_{u_1}, z_{u_2}, z_{u_3}, z_{u_4}]^T$
Actuator input u	$\left[u_{1}, u_{2}, u_{3}, u_{4} ight]^{T}$
Measured output y	$[\ddot{z}_s, \ddot{z}_\theta, \ddot{z}_\phi, D_1, D_2, D_3, D_4]^T$

5.2 Controller Design

5.2.1 Design of \tilde{U}_2

The annihilated output \tilde{U}_2 can be calculated from the inverse of \hat{P}_{21} in (1.2).

5.2.2 Design of K_1

The stabilizing controller K_1 is constructed by MATLAB ncfsyn function, and $K_1^{w_i}$ (i = 1, 2, 3, 4, 5, 6, 7) are shown in Appendix from (A.7) to (A.13).

5.3 Simulation

After LFT form of the equations of motion is derived, the numerical model can be calculated by substituting all values in Table 5.3. Then we can generate some disturbances to simulate the vibrational situation. The disturbances w are given in equation from (5.18) to (5.24) and also shown in Figure 5.2.

$$F_s = 10000sin(\pi t) \qquad (unit:N) \qquad (5.18)$$

$$T_{\phi} = 100000sin(2\pi t)$$
 (unit: N * m) (5.19)

$$T_{\phi} = 300000sin(3\pi t) \qquad (unit: N*m) \tag{5.20}$$

$$z_{r_1} = 1.9sin(2.12\pi t) \qquad (unit:m) \qquad (5.21)$$

$$z_{r_2} = 2.1 sin(2.42\pi t)$$
 (unit : m) (5.22)

$$z_{r_3} = 2.2sin(2.42\pi t) \qquad (unit:m) \qquad (5.23)$$

$$z_{r_4} = 2.3sin(2.30\pi t)$$
 (unit: m) (5.24)

First, we observe the open-loop system of the full table, as shown in Figure 5.3.

The closed-loop system constructed by designing $\tilde{U}_2^{w_i}$, and $K_1^{w_i}$, where i = 1, 2, 3, 4, 5, 6, 7, has the following corresponding annihilated outputs \tilde{y}^{w_i} , as shown in Figure 5.4.

Figure 5.2: Exogenous Disturbances

Symbol	Value	Unit
m_s	19.0322	kg
m_u	11.5250	kg
c_1	373.558	Ns/m
c_2	289.247	Ns/m
c_3	446.353	Ns/m
k_1	$2.43584 imes 10^5$	N/m
k_2	$2.02263 imes 10^5$	N/m
k_3	5.81508×10^5	N/m
Others	other parameters in full table ?	???
γ	$\frac{0.0005662}{s+272.2}$	

Table 5.3: Parameters in The Full Table

Figure 5.3: Outputs of An Open-loop System

Figure 5.4: Annihilated Outputs

Figure 5.5: Response of Piezo Actuators

Also, because the purpose of the piezo actuator is to reduce the exogenous signal w, its output response matters in my simulation, as shown in Figure 5.5.

In my simulation, if only the steady state is considered, it can be observed that the maximum amplitude of $(z_a - z_s)$ are approximately 3×10^{-8} meter for all four piezo actuators.

5.3.1 Vibration Reduction

The importance of my research is to reduce the regulated outputs z, so, here, I compare the open-loop and closed-loop system in Figure 5.6.

For the duration from 425 to 450 seconds, the vibration reduction is significant when seven controllers are open.

Figure 5.6: Regulated Outputs of Open- and Closed-loop System.

Table 5.4: Vibration Reduction of The Regulated Outputs

	z_s	$z_{ heta}$	z_{ϕ}	z_{u_1}	z_{u_2}	z_{u_3}	z_{u_4}
only $K_1^{w_1}$ open	21.4%	0.04%	0.0%	0.38%	0.52%	-0.04%	-0.02%
only $K_1^{w_2}$ open	1.59%	61.3%	0.0%	0.05%	0.03%	1.32%	1.22%
only $K_1^{w_3}$ open	0.0%	0.0%	25.8%	-0.76%	-0.60%	-0.59%	-0.59%
only $K_1^{w_4}$ open	7.42%	0.61%	3.69%	2.48%	0.07%	0.21%	-0.27%
only $K_1^{w_5}$ open	10.6%	0.74%	2.94%	0.14%	2.58%	-0.06%	0.15%
only $K_1^{w_6}$ open	5.19%	0.95%	3.13%	0.04%	0.16%	2.19%	0.45%
only $K_1^{w_7}$ open	0.27%	1.09%	6.01%	0.42%	-0.23%	-0.41%	2.23%
all $K_1^{w_i}$ open	54.4%	70.3%	50.3%	2.69%	2.55%	2.64%	3.14%

Chapter 6

Disturbance Response Decoupling

6.1 General Control Configuration

Previously, a decoupling method proposed by Wang [16] incorporated the robust control method to the linear fractional transformation (LFT), and the closed-loop transfer function from one specific disturbance to the regulated outputs was fixed. That is, the controller was designed to improve the regulated outputs from the system excited by other disturbances. However, the number of disturbance sets should be expanded into higher-dimensional form if the system can be excited by more discurbances. Because of the limitations of multivariable control of LFT, it becomes necessary to modify the original algorithm. Therefore, input disturbance response decoupling (IDRD) is proposed to improve the regulated outputs *z* from the system excited by one disturbance ω_1 . In other words, our IDRD for multivariable control of LFT provides a decouping scheme for the improvement from one excitation of the system, and other disturbances have no effects on the control signals.

Consider an open-loop plant $G = P_{11}$, which is the transfer function from the disturbances ω to the regulated outputs z, as shown in Figure 6.1. Also, consider a generalized plant P in terms of linear fractional transformation (LFT) of a controller K as shown in Figure 6.2. Because of the analysis of closed-loop

Figure 6.1: Open-loop System

Figure 6.2: General Control Configuration

Figure 6.3: Closed-loop System

performance given the controller, we merge K into the interconnection structure and obtain the system $H = F_l(P, K)$ as shown in Figure 6.3.

6.2 Review of Controller Parameterization

Controller parameterization is a fundamental problem in control theory. If the set of stabilizing controllers for a given plant is parameterized, then the parameters of the controllers become a function of a single variable. In this section, we will review some techniques for controller parameterization.

$$\begin{pmatrix} z \\ y \end{pmatrix} = \begin{pmatrix} P_{11} & P_{12} \\ P_{21} & P_{22} \end{pmatrix} \begin{pmatrix} w \\ u \end{pmatrix}$$
(6.1)

Suppose the generalized plant P is stabilizable. Since P_{11} , P_{12} , P_{21} , and P_{22} defined in (6.1) share the same unstable poles [18] [19], it can be proved that the stabilizing controller K is an internally-stabilizing controller for P if and only if K is an internally-stabilizing controller for P_{22} . Let $P_{22} = NM^{-1} = \tilde{M}^{-1}\tilde{N}$ be the right and left coprime stable rational matrix of P_{22} and

$$\begin{pmatrix} \tilde{X} & -\tilde{Y} \\ -\tilde{N} & \tilde{M} \end{pmatrix} \begin{pmatrix} M & Y \\ N & X \end{pmatrix} = \begin{pmatrix} I & 0 \\ 0 & I \end{pmatrix}$$
(6.2)

be the corresponding Bezout identities, where all matrices in (6.2) belong to \mathbb{RH}_{∞} , and the set of all stabilizing controllers which stabilizes P_{22} and P are given by

$$K = F_l(K_0, Q), Q \in \mathbb{R}\mathbb{H}_{\infty}$$
(6.3)

where

$$K_0 = \begin{pmatrix} \tilde{X}^{-1}\tilde{Y} & -\tilde{X}^{-1} \\ X^{-1} & X^{-1}N \end{pmatrix}.$$
 (6.4)

Since the closed-loop transfer function H is

$$H = F_l(P, K) = P_{11} + P_{12}K(I - P_{22}K)^{-1}P_{21},$$
(6.5)

we have

$$H = T_1 - T_2 Q T_3 (6.6)$$

where

$$K(I - P_{22}K)^{-1} = (Y - MQ)\tilde{M},$$
 (6.7)

$$T_1 = P_{11} + P_{12}YMP_{21} (6.8)$$

$$T_2 = P_{12}M (6.9)$$

$$T_3 = M P_{21} \tag{6.10}$$

which is an affine parameterization of all internally-stable closed-loop systems.

6.3 Input Disturbance Response Decoupling (IDRD)

Definition 1. Assume that an open-loop system $G = P_{11}$ is stable in (6.1) shown in Figure 6.1. Also, consider a generalized plant P excited by the n disturbances, namely $\omega = [\omega_1, \omega_2, ..., \omega_n]^T$. If the controller K shown in Figure 6.2 improves the closed-loop $H_{\omega_1 \to z}$ without changing other $H_{\omega_j \to z}$, where j = 2, 3, ..., n, that is, if the response can be decoupled from one input disturbance, then we call this control method Input Disturbance Response Decoupling (IDRD).

Now, the objective of this section is to derive IDRD to improve the outputs from the system excited by one specific disturbances. In the following sections, we are going to see how IDRD improves $H_{\omega_1 \to z}$ and how IDRD keeps other $H_{\omega_j \to z}$ the same.

6.3.1 Q-Parameterization (Youla)

A parameterization of all stabilizing controllers for the plant P(s) is given by [20], [16]

$$K = (Y - MQ)(X - NQ)^{-1}$$
(6.11)

46

6.3. Input Disturbance Response Decoupling (IDRD)

$$= (\tilde{X} - Q\tilde{N})^{-1}(\tilde{Y} - Q\tilde{M})$$
(6.12)

where Q is any stable transfer function and all matrices in (6.11) and (6.12) satisfy the Bezout identities (6.2) for the left and right coprime factorization.

The Q-parameterization is useful for controller synthesis [20]. First of all, the search over all K's is replaced by a search over stable Q's. Besides, all closed-loop transfer functions is in the form of (6.6), so they are affine in Q. This further simplifies the optimization problem.

Example 6.3.1. In (6.6), we can see Q parameterization. Once Q is determined, a corresponding controller K can be found by setting $M = \tilde{M} = I, N = \tilde{N} = P_{22}, X = \tilde{X} = I$, and $Y = \tilde{Y} = 0$. Then we have

$$K = -(I - QP_{22})^{-1}Q (6.13)$$

Theorem 6.3.1. Consider a stabilizable generalized plant P in the configuration of (6.1) and Figure 6.2. All stabilizing controllers K is designed in the form of (6.11) and (6.12) with Q in (6.14) such that $H_{\omega_j \to z_1} = G_{\omega_j \to z_1}$.

$$\begin{pmatrix} V_{1} \\ V_{2} \\ V_{3} \\ \vdots \\ V_{m} \end{pmatrix} Q = \begin{pmatrix} Q_{11} \\ -Q_{22}\tilde{U}_{2} + \sum_{j=1}^{n} Q_{2j}\tilde{U}_{j} \\ -Q_{33}\tilde{U}_{3} + \sum_{j=1}^{n} Q_{3j}\tilde{U}_{j} \\ \vdots \\ -Q_{mn}\tilde{U}_{n} + \sum_{j=1}^{n} Q_{mj}\tilde{U}_{j} \end{pmatrix}$$
(6.14)

Where j = 2, 3, ..., n, n is the number of exogenous disturbances, and m is the number of regulated outputs. Also, U and V are unimodular matrices, where

$$U = \left(U_1, U_2, ..., U_n \right)$$
 (6.15)

$$V^T = \left(V_1, V_2, ..., V_m \right)$$
 (6.16)

, and

$$\tilde{U}^{T} = U^{-T} = \left(\tilde{U}_{1}, \tilde{U}_{2}, ..., \tilde{U}_{n} \right)$$
 (6.17)

$$\tilde{V} = V^{-1} = \left(\tilde{V}_1, \tilde{V}_2, ..., \tilde{V}_m \right).$$
(6.18)

Proof. Wang [16] has proved that for any polynomial matrix $T \in \mathbb{RH}_{\infty}$, there exists a left normalrank fatorization (lnf) and a right normalrank fatorization (rnf) of T. Therefore, T_2 and T_3 in (6.6) can be factorized as follows:

$$T_{2j} = EV_j \tag{6.19}$$

$$T_{3j} = U_j F \tag{6.20}$$

Suppose $M = T_2 Q T_3$. Now we are going to prove $M_{\omega_j \to z_1} = 0$ if and only if the parameterization of Q in (6.14) is satisfied.

First, suppose that $M_{\omega_j \to z_1} = 0$. By substituting (6.19) and (6.20) into $M_{\omega_j \to z_1}$, we have

$$E_j V_j Q U_j F_j = 0 \tag{6.21}$$

where j = 2, 3, ..., n. Because E has full column normalrank, and because F has full row normalrank, (6.21) is equivalent to (6.22).

$$V_j Q U_j = 0 \tag{6.22}$$

Thus, we have the following form:

$$V_2 Q \left(U_1, U_2, ..., U_n \right) = \left(Q_{21}, 0, Q_{23}, ..., Q_{2n} \right)$$
(6.23)

$$V_{3}Q\left(U_{1}, U_{2}, ..., U_{n}\right) = \left(Q_{31}, Q_{32}, 0, ..., Q_{3n}\right)$$
(6.24)

$$V_m Q \left(U_1, U_2, ..., U_n \right) = \left(Q_{m1}, Q_{m2}, Q_{m3}, ..., 0 \right)$$
(6.25)

Suppose $V_1Q = Q_{11}$. Then we have proven the Q parameterization expressed in (6.14).

Now, we want to prove this in the opposite direction. Suppose we have known the expression of Q in (6.14). Then intuitively (6.22) holds. Then we can multiply some lnf and rnf to get the result, same as in (6.21). Therefore, we have proven $M_{\omega_j \to z_1} = 0$ as a result for j = 2, 3, ..., n.

Theorem 6.3.2. Consider a stabilizable generalized plant P in the configuration of (6.1) and Figure 6.2. All stabilizing controllers K is designed in the form of (6.11) and (6.12) with Q in (6.26) such that $H_{\omega_j \to z_1} = G_{\omega_j \to z_1}$.

$$\begin{pmatrix} V_1 \\ \hat{V}_2 \end{pmatrix} Q = \begin{pmatrix} Q_{11} \\ \hat{Q}_2 \tilde{U} \end{pmatrix}$$
(6.26)

Where $\hat{V}_2 = [V_2, V_3, ..., V_m]^T$, $\tilde{U} = [\tilde{U}_1, \tilde{U}_2, \cdots, \tilde{U}_n]^T$, and

$$\hat{Q}_{2} = \begin{pmatrix} Q_{21} & 0 & Q_{23} & \cdots & Q_{2m} \\ Q_{31} & Q_{32} & 0 & \cdots & Q_{3m} \\ \vdots & & & \vdots \\ Q_{m1} & Q_{m2} & Q_{m3} & \cdots & 0 \end{pmatrix}$$
(6.27)

Proof. Here, we factorize the submatrix of (6.14) to generalize Theorem 6.3.1.

$$\hat{Q}_{2}\tilde{U} = \begin{pmatrix} -Q_{22}\tilde{U}_{2} + \sum_{j=1}^{n} Q_{2j}\tilde{U}_{j} \\ -Q_{33}\tilde{U}_{2} + \sum_{j=1}^{m} Q_{3j}\tilde{U}_{j} \\ \vdots \\ -Q_{mn}\tilde{U}_{n} + \sum_{j=1}^{n} Q_{mj}\tilde{U}_{j} \end{pmatrix}$$
(6.28)

Because there are more entries in \hat{Q}_2 than ones in \tilde{U} , it is possible to find \hat{Q}_2 such that $U = \tilde{U}^{-1}$ is also unimodular. Then, in a similar way, we can prove that all stabilizing controllers K can be designed in the form of (6.11) and (6.12) with Q in (6.26) if and only if $H_{\omega_j \to z_1} = G_{\omega_j \to z_1}$.

6.3.2 Decoupling Effect

Theorem 6.3.3. Let the open-loop system $G = P_{11}$ is stable. Assume K_0 in (6.4) is zero. There exists $\tilde{U}_1 \in \mathbb{RH}_{\infty}$ such that all stabilizing controllers requiring $H_{\omega_j \to z} = G_{\omega_j \to z}$, where j = 2, 3, ..., n, can be parameterized as

$$K = -(I - \hat{Q}_2 \tilde{U}_1 P_{22})^{-1} \hat{Q}_2 \tilde{U}_1$$
(6.29)

for $\hat{Q}_2 \in \mathbb{RH}_{\infty}$, where U_j , is defined in (6.20), and \tilde{U} is defined in (6.17).

Figure 6.4: Control Structure of IDRD

Figure 6.5: Control Structure of IDRD

Proof. By substituting $Q = \hat{Q}_2 \tilde{U}_1$ into (6.13), then we get the result of (6.29).

Theorem 6.3.4. Let the open-loop system $G = P_{11}$ is stable. Assume K_0 in (6.4) is zero. Let $U_j, j = 2, 3, ..., n$ be defined in Theorem 6.3.3. Then we have $K = K_1 \tilde{U}_1$, where K_1 is a stabilizing controller for $\tilde{U}_1 P_{22}$.

Proof. In Section 6.2, we conclude that K stabilizes P if and only if K stabilizes P_{22} . Apparently, it implies that K_1 stabilizes P^+ if and only if K_1 stabilizes \tilde{U}_1P_{22} , where P^+ is defined in Figure 6.5.

Theorem 6.3.5. Let the open-loop system $G = P_{11}$ is stable. Assume K_0 in (6.4) is zero. Also consider the control configuration in Figure 6.6 with generalized plant P given by (6.1). If the design of \tilde{U}_1 satisfies (6.30), where \tilde{U}_1 is defined in (6.15) and (6.17), then the closed-loop $H_{\omega_j \to z}$ remains the same as the open-loop $G_{\omega_j \to z}$, where j = 2, 3, ..., n.

$$\tilde{U} = P_{21}^{-1} \tag{6.30}$$

Proof. From (6.5), the close-loop system $H_{\omega \to z}$ in Figure 6.6 can be rearranged as:

$$H_{\omega \to z} = P_{11} + P_{12}(I - K_1 \tilde{U}_1 P_{22})^{-1} K_1 \tilde{U}_1 P_{21}$$
(6.31)

If $\tilde{U}P_{21} = I$, then

$$R = \tilde{U}P_{21} = \begin{pmatrix} \tilde{U}_1 \\ \tilde{U}_2 \\ \vdots \\ \tilde{U}_m \end{pmatrix} P_{21} = \begin{pmatrix} 1 & 0 & 0 & \cdots & 0 \\ 0 & 1 & 0 & \cdots & 0 \\ \vdots & & & \vdots \\ 0 & 0 & 0 & \cdots & 1 \end{pmatrix} = \begin{pmatrix} r_1 \\ r_2 \\ \vdots \\ r_m \end{pmatrix}$$
(6.32)

where each row vector r_j has zero entries except for the j-th entry $(r_{jj} = 1)$. If we take \tilde{U}_1 , then (6.31) can be simplified into

$$H_{\omega \to z} = P_{11} + P_{12} (I - K_1 \tilde{U}_1 P_{22})^{-1} K_1 r_1$$
(6.33)

which means that $H_{\omega_1 \to z}$ will be changed, and that the other $H_{\omega_1 \to z}$ will be fixed.

6.4 Output Disturbance Response Decoupling (ODRD)

Definition 2. Assume that an open-loop system $G = P_{11}$ is stable in (6.1) shown in Figure 6.1. Also, consider a generalized plant P has m regulated outputs, namely $z = [z_1, z_2, ..., z_m]^T$. If the controller K shown in Figure 6.2 improves the closed-loop $H_{\omega \to z_1}$ without changing other $H_{\omega \to z_j}$, where j = 2, 3, ..., m, that is, if each output of the system, which is excited by many disturbances, can be individually discussed, then we call this control method Output Disturbance Response Decoupling (ODRD).

Now, the objective of this section is to derive ODRD to improve single output from the system excited by various disturbances. In the following sections, we are going to see how ODRD improves $H_{\omega \to z_1}$ and how ODRD keeps other $H_{\omega \to z_j}$ the same.

6.4.1 **Q-Parameterization** (Youla)

Lemma 6.4.1. Consider a stabilizable generalized plant P in the configuration of (6.1) and Figure 6.2. All stabilizing controllers K is designed in the form of (6.11) and (6.12) with Q in (6.34) such that $H_{\omega_1 \to z_j} = G_{\omega_1 \to z_j}$.

$$Q\left(\begin{array}{c}U_1\\\hat{U}_2\end{array}\right) = \left(\begin{array}{c}Q_{11}\\\tilde{V}\hat{Q}_2\end{array}\right)$$
(6.34)

Where $\hat{U}_2 = [U_2, U_3, ..., U_n], \tilde{V} = [\tilde{V}_1, \tilde{V}_2, \cdots, \tilde{V}_m]$, and

$$\hat{Q}_{2} = \begin{pmatrix} Q_{21} & 0 & Q_{23} & \cdots & Q_{2n} \\ Q_{31} & Q_{32} & 0 & \cdots & Q_{3n} \\ \vdots & & & \vdots \\ Q_{m1} & Q_{m2} & Q_{m3} & \cdots & 0 \end{pmatrix}$$
(6.35)

Figure 6.6: Control Structure of ODRD

$$\tilde{V}\hat{Q}_{2} = \begin{pmatrix} -\tilde{V}_{2}Q_{22} + \sum_{j=1}^{m} \tilde{V}_{j}Q_{j2} \\ -\tilde{V}_{3}Q_{33} + \sum_{j=1}^{m} \tilde{V}_{j}Q_{j3} \\ \vdots \\ -\tilde{V}_{m}Q_{mm} + \sum_{j=1}^{m} \tilde{V}_{j}Q_{jn} \end{pmatrix}$$
(6.36)

Proof. Because there are more entries in \hat{Q}_2 than ones in \tilde{V} , it is possible to find \hat{Q}_2 such that $V = \tilde{V}^{-1}$ is also unimodular. Then, in a similar way, we can prove that all stabilizing controllers K can be designed in the form of (6.11) and (6.12) with Q in (6.34) if and only if $H_{\omega_1 \to z_j} = G_{\omega_1 \to z_j}$.

6.4.2 Decoupling Effect

Theorem 6.4.2. Let the open-loop system $G = P_{11}$ is stable. Assume K_0 in (6.4) is zero. There exists $\tilde{V}_1 \in \mathbb{RH}_{\infty}$ such that all stabilizing controllers requiring $H_{\omega \to z_j} = G_{\omega \to z_j}$, where j = 2, 3, ..., m, can be parameterized as

$$K = -\tilde{V}_1 \hat{Q}_2 (I - P_{22} \tilde{V}_1 \hat{Q}_2)^{-1}$$
(6.37)

for $\hat{Q}_2 \in \mathbb{RH}_{\infty}$, where V_j , is defined in (6.19), and is defined in (6.18).

Proof. By substituting $Q = \tilde{V}_1 \hat{Q}_2$ into (6.13), then we get the result of (6.37).

Figure 6.7: Control Structure of ODRD

Theorem 6.4.3. Let the open-loop system $G = P_{11}$ is stable. Assume K_0 in (6.4) is zero. Let $V_j, j = 2, 3, ..., m$ be defined in Theorem 6.4.2. Then we have $K = \tilde{V}_1 K_1$, where K_1 is a stabilizing controller for $P_{22}\tilde{V}_1$.

Proof. In Section 6.2, we conclude that K stabilizes P if and only if K stabilizes P_{22} . Apparently, it implies that K_1 stabilizes P^+ if and only if K_1 stabilizes $P_{22}\tilde{V}_1$, where P^+ is defined in Figure 6.7.

Theorem 6.4.4. Let the open-loop system $G = P_{11}$ is stable. Assume K_0 in (6.4) is zero. Also consider the control configuration in Figure 6.6 with generalized plant P given by (6.1). If the design of \tilde{V}_1 satisfies (6.38), where \tilde{V}_1 is defined in (6.16) and (6.18), then the closed-loop $H_{\omega \to z_j}$ remains the same as the open-loop $G_{\omega \to z_j}$, where j = 2, 3, ..., m.

$$\tilde{V} = P_{12}^{-1} \tag{6.38}$$

Proof. From (6.5), the close-loop system $H_{\omega \to z}$ in Figure 6.6 can be rearranged as:

$$H_{\omega \to z} = P_{11} + P_{12}\tilde{V}_1 K_1 (I - P_{22}\tilde{V}_1 K_1)^{-1} P_{21}$$
(6.39)
If $P_{12}\tilde{V} = I$, then

$$C = P_{12}\tilde{V} = P_{12}\left(\begin{array}{cccc} \tilde{V}_1 & \tilde{V}_2 & \cdots & \tilde{V}_m \end{array}\right) = \left(\begin{array}{cccc} 1 & 0 & 0 & \cdots & 0\\ 0 & 1 & 0 & \cdots & 0\\ \vdots & & & \vdots\\ 0 & 0 & 0 & \cdots & 1 \end{array}\right) = \left(\begin{array}{cccc} c_1 & c_2 & \cdots & c_m \end{array}\right)$$
(6.40)

where each column vector c_j has zero entries except for the j-th entry $(c_{jj} = 1)$. If we take \tilde{V}_1 , then (6.39) can be simplified into

$$H_{\omega \to z} = P_{11} + c_1 K_1 (I - P_{22} \tilde{V}_1 K_1)^{-1} P_{21}$$
(6.41)

which means that $H_{\omega \to z_1}$ will be changed, and that the other $H_{\omega \to z_j}$ will be fixed.

6. Disturbance Response Decoupling

Chapter 7

Output DRD Applied to A Half Table

7.1 Output Disturbance Response Decoupling (ODRD)

Previously, we have derived disturbance response decoupling [16]. Now, we rename it as input disturbance response decoupling (IDRD) because the purpose of IDRD is to fix the transfer function $T_{\omega_1 \to z}$, and we pay attention to one specific disturbance in this control structure. However, there is another issue to be considered: if there are many external disturbances from the environment, can we fix at least one response? That is, no matter what the environmental disturbances are, the system still has the same response z_1 . Therefore, it becomes necessary to derive another decoupling form to improve the system response, and in this chapter, a new objective is to fix the transfer function from all disturbances to one regulated output z_1 . In the following pages, output disturbance response decoupling (ODRD) will be introduced to fix the transfer function $T_{\omega \to z_1}$.

$$\begin{pmatrix} z \\ y \end{pmatrix} = \begin{pmatrix} P_{11} & P_{12} \\ P_{21} & P_{22} \end{pmatrix} \begin{pmatrix} w \\ u \end{pmatrix}$$
(7.1)

$$(open-loop)G = P_{11} = \begin{pmatrix} G_1 & G_2 \\ G_3 & G_4 \end{pmatrix};$$
 $(closed-loop)H = \begin{pmatrix} H_1 & H_2 \\ H_3 & H_4 \end{pmatrix}$

$$(7.2)$$

Figure 7.1: Control Structure of ODRD

Definition 3. Let G be open-loop stable in (7.2) and in (7.1). Consider a right annihilator of $P_{12,1}$, namely \tilde{V}_2 , where $P_{12,1}$ is $[P_{12,11}, P_{12,12}, ..., P_{12,1n}]^T$ and n is the number of actuators. The design of \tilde{V}_2 is to fix $T_{\omega \to z_1}$ in a closed-loop system. If (7.3) is satisfied, then we say we can fix the transfer function $T_{\omega \to z_1}$, and this is the spirit of output disturbance response decoupling (ODRD).

$$P_{12,1}\tilde{V}_2 = 0 \tag{7.3}$$

Proof. The general form of ODRD should be proved here, but I haven't finished it yet.

Lemma 7.1.1. Consider a special case of (7.1) with a specific dimension, as shown in Figure 7.1. Assume $P_{11} \in \mathbb{R}^{2\times 2}$, $P_{12} \in \mathbb{R}^{2\times 2}$, $P_{21} \in \mathbb{R}^{1\times 2}$, and $P_{22} \in \mathbb{R}^{1\times 2}$. Also, consider $\tilde{V}_2 \in \mathbb{R}^{2\times 1}$. To satisfy the condition in (7.3), \tilde{V}_2 can be designed as $[-p_{12,12}, p_{12,11}]^T W$, where W is a weighting function and $W \in \mathbb{R}$. Then, $K_1 \in \mathbb{R}^1$ can be designed to stabilizes $P_{22}\tilde{V}_2$.

Proof. The closed-loop system in Figure 7.1 can be simplified into a transfer function H from $[\omega_1, \omega_2]^T$ to $[z_1, z_2]^T$ described in (7.2), and we can derive H from MATLAB symbolic expression, where H_1 , H_2 , H_3 , and H_4 are described in (7.4):

7.2. Dynamic Equations

$$H_1 = G_1 - \frac{1}{\Delta} K_1 P_{21,1} [P_{12,11}, P_{12,12}] [\tilde{V}_2^1, \tilde{V}_2^2]^T$$
(7.4)

$$H_2 = G_2 - \frac{1}{\Delta} K_1 P_{21,2} [P_{12,11}, P_{12,12}] [\tilde{V}_2^1, \tilde{V}_2^2]^T$$
(7.5)

$$H_3 = G_3 - \frac{1}{\Delta} K_1 P_{21,1}[P_{12,21}, P_{12,22}][\tilde{V}_2^1, \tilde{V}_2^2]^T$$
(7.6)

$$H_4 = G_4 - \frac{1}{\Delta} K_1 P_{21,2}[P_{12,21}, P_{12,22}] [\tilde{V}_2^1, \tilde{V}_2^2]^T$$
(7.7)

Where

$$\Delta = K_1[P_{22,1}, P_{22,2}][\tilde{V}_2^1, \tilde{V}_2^2]^T - 1$$
(7.8)

To fix $T_{\omega \to z_1}$, we have assumptions of $G_1 = H_1$ and $G_2 = H_2$. Obviously, ODRD provides solutions for \tilde{V}_2 . In the next section, we will apply ODRD to a half table by using this lemma with the same matrix dimension.

7.2 Dynamic Equations

A half-table model is used to study the dynamics of an optical table [1, 17]. Figure 7.2 illustrates the free body diagram, and its corresponding equations of motion can be derived as:

$$m_s \ddot{z}_s = F_s - u_{p_1} - u_{p_2} \tag{7.9}$$

$$I_{\phi}\ddot{z}_{\phi} = T_{\phi} - u_{p_1}l_1 + u_{p_2}l_2 \tag{7.10}$$

$$m_{u_1}\ddot{z}_{u_1} = u_{p_1} - \theta_{1_1}(z_{u_1} - z_{r_1})$$
(7.11)

7. Output DRD Applied to A Half Table

Figure 7.2: Half Table [12]

$$m_{u_2}\ddot{z}_{u_2} = u_{p_2} - \theta_{1_2}(z_{u_2} - z_{r_2}) \tag{7.12}$$

where u_{p_1} and u_{p_2} are defined as:

$$u_{p_1} = \theta_{2_1}(z_s + l_1 z_\phi - z_{u_1}) + \theta_{3_1}(z_{a_1} - z_{u_1})$$
(7.13)

$$u_{p_2} = \theta_{2_2}(z_s - l_2 z_\phi - z_{u_2}) + \theta_{3_2}(z_{a_2} - z_{u_2})$$
(7.14)

where each parameter is defined in Table 7.1. And the displacement output of z_a can be substituted by the transfer function γ :

$$z_{a_1} - z_s - l_1 z_\phi = \gamma u_1 \tag{7.15}$$

$$z_{a_2} - z_s + l_2 z_\phi = \gamma u_2 \tag{7.16}$$

Then, the above equations can be formulated into LFT form. The next thing to do is to simplify the half table problem. Because of the limitations of ODRD described in Lemma 7.1.1, we suppose that the force F_s and torque T_{ϕ} does not exist. In the following simulation, we will only discuss a simplified case with two disturbances from an uneven road, and all signals are defined in Table 7.2.

Symbol	Meaning
m_s	Sprung mass
m_u	Unsprung mass
F_s	Force applying on the sprung mass
θ_{1_j}	A passive component connecting m_u and the platform, where $j = 1, 2$
$ heta_{2_j}$	A passive component connecting m_u and m_s , where $j = 1, 2$
$ heta_{3_j}$	A passive component connecting m_u and the piezo actuator, where $j = 1, 2$
z_s	Displacement of the sprung mass
z_{u_j}	Displacement of the unsprung mass, where $j = 1, 2$
z_{r_j}	Displacement of the platform, where $j = 1, 2$
z_{a_j}	Displacement output of the piezo actuator, where $j = 1, 2$
γ_j	Transfer function from input voltage to the displacement $(z_{a_j} - z_s)$

Table 7.1: Symbol Meanings of The Half Table

Table 7.2: Signal Representation of A Simplified Half Table

Symbol	Signal Representation
Exogenous disturbance w	$\left[z_{r_1}, z_{r_2}\right]^T$
Regulated output z	$\left[z_{s},z_{\phi} ight]^{T}$
Actuator input u	$[u_1, u_2]^T$
Measured output y	z_{u_1}

Symbol	Value	Unit
m_s	10.8090	kg
m_{u_1}	9.451	kg
m_{u_2}	12.630	kg
c_{1_j}	373.558	Ns/m
c_{2_j}	289.247	Ns/m
c_{3_j}	446.353	Ns/m
k_{1_j}	2.43584×10^5	N/m
k_{2_j}	2.02263×10^5	N/m
k_{3_j}	5.81508×10^5	N/m
l_1	0.225	m
l_2	0.225	m
γ	$\frac{0.0005662}{s+272.2}$	

Table 7.3: Parameters in The Half Table

Figure 7.3: Exogenous Disturbances

7.3 Simulation

Note: The output of PZT in this section is unconstrained, i.e., the voltage u can be maximized without considering the limitation of the PZT.

After LFT form of the equations of motion is derived, the numerical model can be calculated by substituting all values in Table 7.3. Then we can generate some disturbances to simulate the vibrational situation. The disturbances w are given in equation (7.17) and (7.18) and also shown in Figure 7.3.

$$\begin{cases} z_{r_1} = 0.00011sin(6.6\pi t) & (unit:m) \end{cases}$$
(7.17)

$$z_{r_2} = 0.00010sin(12.0\pi t) \qquad (unit:m)$$
(7.18)

7.3.1 Controller Design

To fix $T_{\omega \to z_1}$, we can design a transfer function $\tilde{V}_2^{z_1}$ by using Lemma 7.1.1. Also, to fix $T_{\omega \to z_2}$, we can design another $\tilde{V}_2^{z_2}$. The stabilizing controller K_1 can be designed by using MATLAB command ncfsyn, and K_1 is designed to stabilizes $P_{22}\tilde{V}_2$.

In the following three sub-sections, we will discuss three different ODRD by fixing $T_{\omega \to z_1}, T_{\omega \to z_2}$, and fixing both $T_{\omega \to z_1}$ and $T_{\omega \to z_2}$.

7.3. Simulation

Figure 7.4: Response of Piezo Actuators (1st ODRD).

Figure 7.5: Regulated Outputs of Open- and Closed-loop System (1st ODRD).

7.3.2 First ODRD

First, we can observe the system response by fixing $T_{\omega \to z_1}$. We can see control signals for each actuator PZT in Figure 7.4 and system response in Figure 7.5. Besides, in ODRD structure, we fix the transfer function $T_{\omega \to z_1}$. In other words, $T_{\omega \to z_2}$ might be changed, and it is possible that the vibrational pattern of the regulated output z_2 can be improved. Here, we observe the system response only from 80 to 100 seconds, and the 2-norm of each regulated signal is calculated in Table 7.4 and Table 7.5.

Figure 7.6: Response of Piezo Actuators (2nd ODRD).

Figure 7.7: Regulated Outputs of Open- and Closed-loop System (2nd ODRD).

7.3.3 Second ODRD

Next, we are interested in fixing another transfer function, namely $T_{\omega \to z_2}$. We can see control signals for each actuator PZT in Figure 7.6 and system response in Figure 7.7. Besides, the 2-norm of each regulated signal from 80 to 100 seconds is calculated in Table 7.4 and Table 7.5.

7.3.4 Hybrid ODRD

Next, we are interested in fixing both transfer functions, i.e., both $T_{\omega \to z_1}$ and $T_{\omega \to z_2}$. We can see control signals for each actuator PZT in Figure 7.8 and system response

7.3. Simulation

Figure 7.9: Regulated Outputs of Open- and Closed-loop System (Hybrid ODRD).

in Figure 7.9. Besides, the 2-norm of each regulated signal from 80 to 100 seconds is calculated in Table 7.4 and Table 7.5.

z_s	30 - 50 sec	55 - 75 sec	80 - 100 sec
only $\tilde{V}_2^{z_1}$ open	0%	0%	0%
only $ ilde{V}_2^{z_2}$ open	11.1%	6.2%	7.2%
Both $\tilde{V}_2^{z_j}$ open $(j = 1, 2)$	15.1%	8.1%	9.6%

Table 7.4: Vibration Reduction of The Regulated Output z_s .

Table 7.5: Vibration Reduction of The Regulated Output z_{ϕ} .

z_{ϕ}	30 - 50 sec	55 - 75 sec	80 - 100 sec
only $\tilde{V}_2^{z_1}$ open	42.3%	27.9%	35.1%
only $ ilde{V}_2^{z_2}$ open	0%	0%	0%
Both $\tilde{V}_2^{z_j}$ open $(j = 1, 2)$	35.9%	35.1%	35.5%

Chapter 8

Input-Output DRD Applied to A Half Table

8.1 Input-Output Disturbance Response Decoupling (IODRD)

Previously, we have derived IDRD and ODRD, which are two algorithms designed to fix $T_{\omega_1 \to z}$ and $T_{\omega \to z_1}$, respectively. How about fixing $T_{\omega_1 \to z_1}$? It will be interesting to observe the modification of a transfer function from one specific input to another regulated output. In this chapter, a new algorithm is proposed: Input-Output Disturbance Response Decoupling (abbreviated as IODRD), and the objective is to fix $T_{\omega_1 \to z_1}$.

Definition 4. Let G be open-loop stable in (7.2) and in (7.1). Consider a left annihilator of $P_{21,1}$, namely \tilde{U}_2 , where $P_{21,1}$ is $[P_{21,11}, P_{21,21}, ..., P_{21,m1}]^T$ and m is the number of measured outputs. The design of \tilde{U}_2 is to fix $T_{\omega_1 \to z}$ in a closed-loop system. Besides, consider a right annihilator of $P_{12,1}$, namely \tilde{V}_2 , where $P_{12,1}$ is $[P_{12,11}, P_{12,12}, ..., P_{12,1n}]^T$ and n is the number of actuators. The design of \tilde{V}_2 is to fix $T_{\omega \to z_1}$ in a closed-loop system. If both (8.1) and (8.2) are satisfied, then we say we can fix the transfer function $T_{\omega_1 \to z_1}$, and this is the spirit of input-output

Figure 8.1: Control Structure of IODRD

disturbance response decoupling (IODRD).

$$P_{12,1}V_2 = 0 \tag{8.1}$$

$$U_2 P_{21,1} = 0 \tag{8.2}$$

Proof. The general form of IODRD should be proved here, but I haven't finished it yet.

Lemma 8.1.1. Consider a special case of (7.1) with a specific dimension, as shown in Figure 8.1. Assume $P_{11} \in \mathbb{R}^{2 \times 2}$, $P_{12} \in \mathbb{R}^{2 \times 2}$, $P_{21} \in \mathbb{R}^{2 \times 2}$, and $P_{22} \in \mathbb{R}^{2 \times 2}$. Also, consider $\tilde{V}_2 \in \mathbb{R}^{2 \times 1}$ and $\tilde{U}_2 \in \mathbb{R}^{1 \times 2}$. To satisfy two conditions, namely (8.1) and (8.2), \tilde{U}_2 can be designed as $[-p_{21,21}, p_{21,11}]$, and \tilde{V}_2 can be designed as $[-p_{12,12}, p_{12,11}]^T$. Then, $K_1 \in \mathbb{R}^1$ can be designed to stabilizes $\tilde{U}_2 P_{22} \tilde{V}_2$.

Proof. The closed-loop system in Figure 8.1 can be simplified into a transfer function H from $[\omega_1, \omega_2]^T$ to $[z_1, z_2]^T$ described in (7.2), and we can derive H from MATLAB symbolic expression, where H_1 , H_2 , H_3 , and H_4 are described in (8.3):

$$H_1 = G_1 - \frac{1}{\Delta} [\tilde{U}_2^1, \tilde{U}_2^2] [P_{21,11}, P_{21,21}]^T K_1 [P_{12,11}, P_{12,12}] [\tilde{V}_2^1, \tilde{V}_2^2]^T$$
(8.3)

$$H_2 = G_2 - \frac{1}{\Delta} [\tilde{U}_2^1, \tilde{U}_2^2] [P_{21,12}, P_{21,22}]^T K_1 [P_{12,11}, P_{12,12}] [\tilde{V}_2^1, \tilde{V}_2^2]^T$$
(8.4)

$$H_3 = G_3 - \frac{1}{\Delta} [\tilde{U}_2^1, \tilde{U}_2^2] [P_{21,11}, P_{21,21}]^T K_1 [P_{12,21}, P_{12,22}] [\tilde{V}_2^1, \tilde{V}_2^2]^T$$
(8.5)

$$H_4 = G_4 - \frac{1}{\Delta} [\tilde{U}_2^1, \tilde{U}_2^2] [P_{21,12}, P_{21,22}]^T K_1 [P_{12,21}, P_{12,22}] [\tilde{V}_2^1, \tilde{V}_2^2]^T$$
(8.6)

Where

$$\Delta = K_1[1,1][P_{22} \circ R][1,1]^T - 1$$
(8.7)

Where $R = \tilde{V}_2 \tilde{U}_2$ and the symbol \circ is the hadamard product performing element-wise multiplication.

In the next section, we will apply IODRD to a half table by using this Lemma 8.1.1 with the same matrix dimension.

8.2 Dynamic Equations

The equations of motion derived in Chapter 7 can be formulated into LFT form. The next thing to do is to simplify the half table problem. Because of the limitations of IODRD described in Lemma 8.1.1, we suppose that the force F_s and torque T_{ϕ} have no effect on the half table. In the following simulation, we will only discuss a simplified case with two disturbances excited from an uneven road, and all signals are defined in Table 8.1.

Figure 8.2: Exogenous Disturbances

8.3 Simulation

Note: The output of PZT in this section is unconstrained, i.e., the voltage u can be maximized without considering the limitation of the PZT.

After LFT form of the equations of motion is derived, we can generate some disturbances to simulate the vibrational situation. The disturbances w are given in equation (8.8) and (8.9) and also shown in Figure 8.2.

$$\begin{cases} z_{r_1} = 0.00011 sin(6.6\pi t) & (unit:m) \end{cases}$$
(8.8)

$$z_{r_2} = 0.00010sin(12.0\pi t) \qquad (unit:m) \tag{8.9}$$

8.3.1 Controller Design

To fix $T_{\omega \to z_1}$, we can design a transfer function $\tilde{V}_2^{z_1}$ by using Lemma 8.1.1. Also, to fix $T_{\omega \to z_2}$, we can design another $\tilde{V}_2^{z_2}$. In addition, to fix $T_{\omega_1 \to z}$, we can design a transfer function $\tilde{U}_2^{\omega_1}$. Also, to fix $T_{\omega_2 \to z}$, we can design another $\tilde{U}_2^{\omega_2}$ The stabilizing controller K_1 can be designed by using MATLAB command ncfsyn, and K_1 is designed to stabilizes $\tilde{U}_2 P_{22} \tilde{V}_2$.

In the following results, we will see how IODRD improves the regulated outputs z by changing four transfer function $T_{\omega_i \to z_j}$, where $i, j \in [1, 2]$

Figure 8.3: Response of Piezo Actuators (1st IODRD).

Figure 8.4: Regulated Outputs of Open- and Closed-loop System (1st IODRD).

8.3.2 First IODRD

First, we can observe the system response by modifying $T_{\omega_2 \to z_2}$. We can see control signals for each actuator PZT in Figure 8.3 and system response in Figure 8.4. Besides, in the IODRD structure, other transfer functions are fixed, and only the regulated output z_2 is improved because IODRD modifies the transfer function $T_{\omega_2 \to z_2}$.

Figure 8.5: Response of Piezo Actuators (2nd IODRD).

Figure 8.6: Regulated Outputs of Open- and Closed-loop System (2nd IODRD).

8.3.3 Second IODRD

Second, we can observe the system response by modifying $T_{\omega_2 \to z_1}$. We can see control signals for each actuator PZT in Figure 8.5 and system response in Figure 8.6. Besides, in the IODRD structure, other transfer functions are fixed, and only the regulated output z_1 is improved because IODRD modifies the transfer function $T_{\omega_2 \to z_1}$.

Figure 8.7: Response of Piezo Actuators (3rd IODRD).

Figure 8.8: Regulated Outputs of Open- and Closed-loop System (3rd IODRD).

8.3.4 Third IODRD

Third, we can observe the system response by modifying $T_{\omega_1 \to z_2}$. We can see control signals for each actuator PZT in Figure 8.7 and system response in Figure 8.8. Besides, in the IODRD structure, other transfer functions are fixed, and only the regulated output z_2 is improved because IODRD modifies the transfer function $T_{\omega_1 \to z_2}$.

8.3.5 Fourth IODRD

Last but not least, we can observe the system response by modifying $T_{\omega_1 \to z_1}$. We can see control signals for each actuator PZT in Figure 8.9 and system response in Figure 8.10. Besides, in the IODRD structure, other transfer functions are fixed, and only the regulated output z_1 is improved because IODRD modifies the transfer function $T_{\omega_1 \to z_1}$.

8.3. Simulation

Symbol	Signal Representation
Exogenous disturbance w	$\left[z_{r_1}, z_{r_2}\right]^T$
Regulated output z	$\left[z_{s},z_{\phi} ight]^{T}$
Actuator input u	$\left[u_1, u_2\right]^T$
Measured output y	$[z_{u_1}, z_{u_2}]^T$

Table 8.1: Signal Representation of A Simplified Half Table

Table 8.2: Vibration Reduction of The Regulated Output z_s .

z_s	30 - 50 sec	55 - 75 sec	80 - 100 sec
1st IODRD	0%	0%	0%
2nd IODRD	0%	2.39%	1.84%
3rd IODRD	0%	0%	0%
4th IODRD	42.4%	0%	7.83%

Table 8.3: Vibration Reduction of The Regulated Output z_{ϕ} .

			e
z_{ϕ}	30 - 50 sec	55 - 75 sec	80 - 100 sec
1st IODRD	0%	48.0%	19.1%
2nd IODRD	0%	0%	0%
3rd IODRD	4.04%	0%	2.10%
4th IODRD	0%	0%	0%

Chapter 9

Conclusions

9.1 Conclusions

This research has explored the effectiveness of disturbance response decoupling (DRD) strategies in the design and control of optical tables, emphasizing the critical need for vibration control in precision applications. By introducing and validating the Input DRD (IDRD) approach, we have demonstrated that it significantly decouples exogenous disturbances and reduces vibrations, enhancing the overall performance of optical tables. Our findings indicate that while the original DRD strategy effectively addresses specific disturbances, it requires modifications to generalize the relationship between multiple disturbances and outputs.

Through the development of Output DRD (ODRD) and Input-Output DRD (IODRD) strategies, we have laid the groundwork for a more comprehensive approach to vibration control in optical tables. Simulation results underscore the potential of these strategies to provide substantial improvements in stability and performance. Overall, this work contributes valuable insights to the field of vibration control, opening new avenues for optimizing the design and functionality of optical systems.

9.2 Future Work

Future research will focus on the experimental validation of the ODRD and IODRD strategies. This will involve designing a series of experiments to systematically evaluate their performance in real-world conditions, assessing their effectiveness in various operational environments. Additionally, we aim to explore the integration of advanced sensor technologies and adaptive control algorithms to further enhance disturbance decoupling capabilities.

Another avenue for future work includes the expansion of the current models to accommodate a wider range of disturbances, including environmental factors that may impact optical table performance. Investigating the scalability of these strategies to larger optical systems and different configurations will also be a key focus, as will the potential application of machine learning techniques to predict and mitigate disturbances dynamically.

Ultimately, this ongoing research seeks to refine vibration control methodologies, contributing to the advancement of optical technologies and their applications in various scientific and industrial fields.

Appendix A

Design of Stabilizing Controller *K*₁

This section shows all numerical values of my stabilizing controllers for quarter, half, and full table.

A.1 Design of K_1 - Quarter Table

$$K_1^{w_1} = \frac{10s^4 + 10000}{s^5 + 10s^4 + 1000000}$$
(A.1)

$$K_1^{w_2} = \frac{10s^4 + 10000}{s^5 + 10s^4 + 1000000}$$
(A.2)

A.2 Design of K_1 - Half Table

$$K_1^{w_1} = \frac{10s^4 + 10000}{s^5 + 10s^4 + 1000000}$$
(A.3)

$$K_1^{w_2} = \frac{10s^4 + 10000}{s^5 + 10s^4 + 100000}$$
(A.4)

$$K_1^{w_3} = \frac{10s^4 + 10000}{s^5 + 10s^4 + 1000000} \tag{A.5}$$

$$K_1^{w_4} = \frac{10s^4 + 10000}{s^5 + 10s^4 + 1000000}$$
(A.6)
79

A.3 Design of K_1 - Full Table

$$K_1^{w_1} = \frac{10s^4 + 10000}{s^5 + 10s^4 + 100000}$$
(A.7)

$$K_1^{w_2} = \frac{10s^4 + 10000}{s^5 + 10s^4 + 1000000}$$
(A.8)

$$K_1^{w_3} = \frac{10s^4 + 10000}{s^5 + 10s^4 + 1000000}$$
(A.9)

$$K_1^{w_4} = \frac{10s^4 + 10000}{s^5 + 10s^4 + 100000}$$
(A.10)

$$K_1^{w_5} = \frac{10s^4 + 10000}{s^5 + 10s^4 + 1000000} \tag{A.11}$$

$$K_1^{w_6} = \frac{10s^4 + 10000}{s^5 + 10s^4 + 1000000} \tag{A.12}$$

$$K_1^{w_7} = \frac{10s^4 + 10000}{s^5 + 10s^4 + 1000000} \tag{A.13}$$

Appendix B

Device Specification

Parameters	Units
14	kg
100	kg
400×400	mm^2
0.1-30	Hz
0.5g	
0.4	m
25	mm
10	mm/rev
1.2×10^{-4}	$kg \times m^2$
4.9 / 20 (peak)	N×m
8192	pulse/rev
$2.7 imes 10^{-4}$	kg×m ²
	Parameters 14 100 400 × 400 0.1-30 0.5g 0.4 25 10 1.2 × 10^{-4} 4.9 / 20 (peak) 8192 2.7 × 10^{-4}

Table B.1: Specification of The Vertical Vibration Machine

Table B.2: Specification of P-844.20, Physik Instrumente [3]

Specifications	Parameters	Units
T 1	20	
Travel range from 0 to 100 v	30	$\mu { m m}$
Push force capacity	3000	Ν
Pull force capacity	700	Ν
Resonant frequency f_0 (no load)	12	kHz
Electrical capacitance	12	μF
Mass without cable	108	g
Length L	65	mm

Table B.3: Specification of E-663, Physik Instrumente [4]

Specifications	Parameters	Units
Channels	3	
Input voltage	-2 to 12	V
Minimum output voltage	-20 to 120	V
Peak output power per channel	14	W
Voltage gain	10 ± 0.1	
Input impedance	100	k Ω
Mass	4.6	kg

Specifications	Parameters	Units
Stroke	7.00	mm
Force sensitivity (at mid stroke)	16.00	N/A
Back EMF constant	16.00	V/m/s
Peak force	72	Ν
Inductance	3.95	mH
Continuous current	0.90	А
Peak current	4.50	А
Power at peak force	188.3	W

Table B.4: Specification of AVM35-HF-7, Akribis [13]

Table B.5: Specification of OPA544, Texas Instruments [14]

Specifications	Parameters	Units
Range of input voltage	± 6	V
Range of power supply	$\pm~10$ to $\pm~35$	V
Maximum output current	2	А
Gain bandwidth	1.4	MHz
Open-loop gain	103	dB
Slew rate	8	V/ms

Table B.6: Specification of Accelerometer 731A/P31, Wilcoxon Research Inc. [7].

Specifications	Parameters	Units
Sensing element design	PZT ceramic / flexture	
Acceleration sensitivity, selectable	10, 100, 1000	V/g
Velocity sensitivity, selectable	0.1, 1, 10	V/in/sec
Vibration range, max	0.5 g peak	
Transverse sensitivity, max	1% of axial	
Noise	0.003	$\mu { m g}/\sqrt{Hz}$
Frequency response (-3 dB)	0.05 - 100	Hz
Vibration limit	10g peak	

Specifications	Parameters	Units
Input voltage (nominal)	3.0	Vrms
Linearity error	$<\pm0.25\%$ of full scale output	
Repeatability error	$<\pm0.01\%$ of full scale output	
Nominal range	\pm 1.25	mm
Impedance, primary	400	Ω

Table B.7: Specification of PR 750-050, Macro Sensors [9].

Table B.8: Specification of LVC-2500, Macro Sensors [9].

Specifications	Parameters	Units
Manufacturer	Macro Sensors	
Туре	LVC-2500	
Input sensitivity range	0.055 to 5.5	Vrms
Full scale outputs	0 to \pm 10 V DC, 5 mA	
Output Non-linearity	$<\pm0.01\%$ of full scale output	
Frequency response (-3dB), selectable	250, 500	Hz

Table B.9: Specification of MLP-200, Transducer Techniques [11].

Specifications	Parameters	Units
Capacity	200	lb
Natural ringing frequency	5200	Hz
Deflection inches	0.003	inch

Table B.10: Specification of NI PCI-6259 [15]

	Analog Input		Analog Output
Analog input channels	16 SE / 8 DI	Analog output channels	2
Nominal input ranges	$\pm 0.1, \pm 1, \pm 5, \pm 10 \; \mathrm{V}$	Nominal output ranges	$\pm 5,\pm 10~\mathrm{V}$
Maximum input range	\pm 11 V	Maximum output range	\pm 11 V
ADC resolution	16 bits	DAC resolution	16 bits
Input impedance	$>$ 10 G Ω	Output impedance	$0.2 \ \Omega$
Input bias current	\pm 100 pA	Current Drive	$\pm 5 \text{ mA}$
Bandwidth (-3dB)	0.7 MHz		

Table B.11: Specification of NI PCIe-6323 [15].

	Analog Input		Analog Output
Analog input channels	32 SE / 16 DI	Analog output channels	4
Nominal input ranges	$\pm 0.2, \pm 1, \pm 5, \pm 10 \; \mathrm{V}$	Nominal output ranges	$\pm 10 \text{ V}$
Maximum input range	\pm 11 V	Maximum output range	\pm 11 V
ADC resolution	16 bits	DAC resolution	16 bits
Input impedance	$> 10~{ m G}\Omega$	Output impedance	$0.2 \ \Omega$
Input bias current	\pm 100 pA	Current Drive	$\pm 5 \text{ mA}$
Bandwidth (-3dB)	0.7 MHz		

B. Device Specification

Bibliography

- Y.-H. Chen, "Multiple hybrid disturbance response decoupling applied to an optical table for vibration suppression," Master's thesis, National Taiwan University, 2021. vii, 4, 15, 23, 35, 59
- [2] P. Technology, "Tooling: Back to basics on die springs part 1," 2020, last accessed 03 February 2022. [Online]. Available: https://www.ptonline.com/vii, 5
- [3] P. Instrumente, "P-844 preloaded piezo actuators," last accessed 03 February 2022. [Online]. Available: https://www.physikinstrumente.com/ vii, xii, 6, 82
- [4] —, "E-663 3-channel piezo amplifier," last accessed 03 February 2022.
 [Online]. Available: https://www.physikinstrumente.com/ vii, xii, 6, 82
- [5] MachineDesign, "What is a voice coil actuator?" 2018, last accessed 03 February 2022. [Online]. Available: https://www.machinedesign.com/ vii, 7
- [6] R.-J. Li, Y.-J. Lei, Z.-X. Chang, L.-S. Zhang, and K.-C. Fan, "Development of a high-sensitivity optical accelerometer for low-frequency vibration measurement," *Sensors*, vol. 18, no. 9, p. 2910, 2018. vii, 8
- [7] W. S. Technologies[®], "Seismic accelerometer and power amplifier system 731a/p31," last accessed 03 February 2022. [Online]. Available: https://wilcoxon.com/ vii, xii, 8, 83

- [8] A. A. Circuits, "Introduction to linear variable differential transformers (lvdts)," 2021, last accessed 03 February 2022. [Online]. Available: https://www.allaboutcircuits.com/ vii, 9, 10
- [9] M. Sensors, "General purpose lvdt position sensors," last accessed 03 February 2022. [Online]. Available: https://www.hgsind.com/ vii, xii, 10, 84
- [10] L. C. Central, "How a load cell works," last accessed 03 February 2022.[Online]. Available: https://www.800loadcel.com/ vii, 11, 12
- [11] T. Techniques, "Mlp series," last accessed 03 February 2022. [Online].Available: https://www.transducertechniques.com/ vii, xii, 12, 84
- [12] S.-Y. Wu, "The applications of inverse disturbance response decoupling and mechatronic inerter networks to an optical table," Master's thesis, National Taiwan University, 2013. vii, viii, 16, 24, 37, 60
- [13] Akribis, "Avm series: Voice coil actuators," last accessed 03 February 2022.[Online]. Available: http://www.akribis-sys.co.kr/ xii, 83
- [14] T. Instruments, "High-voltage, high-current operational amplifier (opa544)," last accessed 03 February 2022. [Online]. Available: https://www.ti.com/ xii, 83
- [15] N. Instruments, "Multifunction i/o device manual," last accessed 03
 February 2022. [Online]. Available: https://www.ni.com/documentation/en/
 multifunction-io-device/ xii, 84, 85
- [16] F.-C. Wang, "Design and synthesis of active and passive vehicle suspensions," Ph.D. dissertation, University of Cambridge, 2001. 2, 43, 46, 48, 57
- [17] R.-Q. Zheng, "Hybrid disturbance response decoupling: Application to a vibration suppression structure," Master's thesis, National Taiwan University, 2019. 15, 23, 35, 59

- [18] K. Glover, D. Limebeer, J. Doyle, E. Kasenally, and M. G. Safonov, "A characterization of all solutions to the four block general distance problem," *SIAM Journal on Control and Optimization*, vol. 29, no. 2, pp. 283–324, 1991.
 45
- [19] M. Green and D. J. Limebeer, *Linear robust control*. Courier Corporation, 2012. 45
- [20] S. Skogestad and I. Postlethwaite, *Multivariable feedback control: analysis and design*. Citeseer, 2007, vol. 2. 46, 47