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Abstract

Vibration control in optical tables is critical for precision applications, necessitating

careful design to minimize disturbances. This paper introduces disturbance re-

sponse decoupling (DRD), focusing on its application to optical table designs, from

quarter and half structures to full tables. Our simulations of DRD control strate-

gies demonstrate their effectiveness in decoupling exogenous disturbances and

significantly reducing vibrations by implementing suitable stabilizing controllers.

As we extend the optical table design to half and full sizes, we find that the

original DRD strategy improves outputs for only one specific disturbance per

controller. Therefore, modifications are needed to generalize the relationship

between all disturbances and outputs. Consequently, we rename the original DRD

architecture as Input DRD (IDRD) and propose two additional strategies: Output

DRD (ODRD) and an integrated approach called Input-Output DRD (IODRD).

Simulation results indicate substantial decoupling effects and notable vibration

reduction. These findings suggest a robust framework for enhancing optical table

performance under varied conditions. Future experiments will be designed to

validate the ODRD and IODRD strategies.

Keywords: Disturbance Response Decoupling (DRD), Vibration Control, Opti-

cal Table, Output DRD (ODRD), Input-Output DRD (IODRD)
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Chapter 1

Related Work

1.1 Linear Fractional Transformation

Consider a multi-input multi-output (MIMO) system, where P is the generalized

plant model, K is the controller, u is the actuator input, w is the exogenous

disturbance, z is the regulated output, y is the measured output. The general control

configuration can be represented by the following linear fractional transformation

(LFT), as shown in Figure 1.1.

 z

y

 =

 P11 P12

P21 P22


 w

u

 (1.1)

If we take Laplace transform of (1.1), then we have the following form:

 ẑ

ŷ

 =

 P̂11 P̂12

P̂21 P̂22


 ŵ

û

 (1.2)

The generalized plant of (1.2) can be further partitioned into the following

form:

1



2 1. Related Work

Figure 1.1: Linear Fractional Transformation


ẑ1

ẑ2

ŷ

 =

 P̂111 P̂112 P̂12

P̂211 P̂212 P̂22




ŵ1

ŵ2

û

 (1.3)

In the following chapters, this concept will be applied to a decoupling strategy

called disturbance response decoupling (DRD) [16].



Chapter 2

Experimental Setup

2.1 Components in An Optical Table

2.1.1 Vertical Vibration Machine

The disturbance zr in my experiment is generated by a vertical vibration machine.

A ball screw servo motor is installed inside the machine to transform the motor axel

rotation to an axial movement. This axial movement represents the disturbance zr.

For details, please refer to Figure 2.1 and Table B.1.

2.1.2 Linear Spring

The spring comes in varieties – the compression spring, the extension spring, the

torsion spring, etc. – all of which serve different and specific functions. For

compression springs there are two basic end type options – closed or open, with

both options having either ground or not ground ends, as shown in Figure 2.2.

Closed and ground compression springs are the most common and sit the most flat

because grinding process is applied to the ends of this kind of springs. Thus closed

and ground compression springs are chosen as my components in my experiment,

and the spring constant can be calculated from the dimensions of the compression

springs:

3



4 2. Experimental Setup

Figure 2.1: Vertical Vibration Machine [1]

k = Gd4

8nD3 (2.1)

where G is transverse elastic modulus (N/mm2), d is material diameter (mm), n

is number of active coils, D is coil mean diameter.

Hooke’s law, discovered by the English scientist Robert Hooke in 1660, states

that, for relatively small deformations of an object, the displacement or size of the

deformation is directly proportional to the deforming force or load. Hooke’s law

can be formulated as:

F = −kx (2.2)

where k is the spring constant, F is the force, and x is the length of exten-

sion/compression.

In the real world, however, springs are influenced by restoring forces and fric-

tion, and frictional forces will diminish the amplitude of oscillation until eventually

the system is at rest. To make the entire model closer to the real model, springs

can be modelled as:



2.1. Components in An Optical Table 5

Figure 2.2: Compression Spring Ends [2]

θ = cs + k (2.3)

where θ is the damped spring model in Laplace domain, c is damping ratio of

the spring, and k is the spring constant.

2.1.3 Piezoelectric Actuator

The optical-table model needs active linear actuator to reduce the vibration from

the disturbances. Because high resolution of the actuator is required, Physik Instru-

mente (PI) offers one kind of piezo actuator: P-844.20 ( Figure 2.3). For details

about P-844.20, please refer to Table B.2.

Besides, the voltage input of the selected piezo actuators should be amplified,

so a piezo amplifier is required. The PI E-663 amplifier in Figure 2.4 has three

low-noise amplifier channels for low-volt piezo actuators that input and output

peak currents of 140 mA in a voltage range of -20 to +120 V. For details, please

refer to Table B.3.
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Figure 2.3: Piezo Actuator P-844.20 [3]

Figure 2.4: Piezoelectric Amplifier E-663 [4]
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Figure 2.5: Voice Coil Motor [5]

2.1.4 Voice Coil Motor

A voice coil motor (VCM) is used to generate the force Fs on top of the mass ms.

The VCM consists of a permanent magnetic field assembly and a coil assembly, as

shown in Figure 2.5. The current flowing through the coil assembly interacts with

the permanent magnetic field and generates a force by Lorentz’ force equation. The

VCM are is commonly used for short travel paths where high acceleration and con-

stant force is required, and Akribis’s VCM AVM35-HF-7 meets our requirement.

For details, please refer to Table B.4.

Besides, Texas Instruments has a high-voltage/high-current operational ampli-

fier (OPA544) suitable for driving VCM. For details, please refer to Table B.5.

2.1.5 Accelerometer

An accelerometer is a device that measures the acceleration of a structure. As

shown in Figure 2.6, an accelerometer comprises a spring, a seismic mass, and

a displacement sensor arranged within a housing attached to a base. The relative

displacement between the seismic mass and the base can be recorded by the
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Figure 2.6: Typical Accelerometer Structure Diagram [6].

Figure 2.7: Accelerometer 731A/P31 [7]

displacement sensor expressed as [6]:

xm − xb = m

k
a (2.4)

where xm is the displacement of the seismic mass, xb is the displacement of

the base, m is the seismic mass, k is the spring constant, and a is the acceleration

we want to know.

Wilcoxon Sensing Technologies® poduces ultra-low frequency seismic ac-

celerometers 731A/P31 Figure 2.7, which can measure the acceleration of my

system. For details, please refer to Table B.6.



2.1. Components in An Optical Table 9

Figure 2.8: Cutaway View of An LVDT [8].

2.1.6 Linear Variable Differential Transformer

The linear variable differential transformer (LVDT), as shown in Figure 2.8, is a

contactless linear position sensor converting the rectilinear motion of an object into

a corresponding electrical signal. Friction-free operation, high resolution (infinite

in theory), high linearity (0.5% or better), and high sensitivity are some of the

important features of the LVDT devices.

Figure 2.9 shows the transfer function of a typical LVDT. The x-axis is the

core displacement from the center. The y-axis is the amplitude of the output AC

voltage. At the origin (x = 0), the output is ideally zero. As the core is moved off

center in either direction, the amplitude of the output increases linearly with the

core displacement. This, LVDT has high linearity in the linear range.

To measure some displacements, such as zs and zu in my experiment, PR 750

LVDTs offered by Macro Sensors are the suitable sensors. Also, to support this

LVDT sensors, we connect a single channel signal conditioner, Macro Sensors

LVC-2500 ( Figure 2.10), that operates on 10-30 Volts DC power. For details,

please refer to specification of LVDTs Table B.7 and the corresponding amplifier

Table B.8.
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Figure 2.9: The transfer function of a typical LVDT [8].

Figure 2.10: Macro Sensors LVC-2500 [9].
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Figure 2.11: Load Cell [10].

2.1.7 Load Cell

Load cell is a force sensor that converts a load or force acting on it into an electrical

signal. One kind of load cells, strain gauge load cell as shown in Figure 2.11,

works on the principle of changing electrical resistance as the conductor is being

elastically deformed, and multiple strain gauges are used to set in a Wheatstone

bridge configuration (balanced when no load is applied, shown in Figure 2.12) in

order to achieve a very high degree of accuracy. The overall change in resistance

across all four strain gauges can be determined by using Ohm’s law [10]:

vO =
[

R3

R3 + R4
− R2

R1 + R2

]
vEX (2.5)

where vO is the output voltage, and vEX is the voltage excitation.

To measure some forces, such as Fs in my experiment, Transducer Techniques

MLP-200 is a suitable force sensor, as shown in Figure 2.13. For details, please

refer to Table B.9.
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Figure 2.12: Wheatstone Bridge Configuration [10].

Figure 2.13: Load Cell MLP-200 [11].
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2.1.8 Multifunction I/O Device

The National Instruments (NI) multifunction I/O device offers analog I/O, corre-

lated digital I/O, 32-bit counters/timers, and analog and digital triggering. The

device delivers low-cost, reliable DAQ capabilities in a wide range of applica-

tions from simple applications in laboratory automation, research, design verifica-

tion/test, and manufacturing test. All sensors we used in the experiment are added

to this NI device. For details, please refer to Table B.10 and Table B.11.
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Chapter 3

Quarter Table

3.1 Dynamics Equations

A quarter-table model is used to study the dynamics of an optical table [1, 17].

Figure 3.1 illustrates the free body diagram, and its corresponding equations of

motion can be derived as:

msz̈s = Fs − θ2(zs − zu) − θ3(za − zu) (3.1)

muz̈u = θ2(zs − zu) + θ3(za − zu) − θ1(zu − zr) (3.2)

where each parameter is defined in Table 3.1. And the displacement output of

za can be substituted by the transfer function γ:

za − zs = γu (3.3)

Then, the equation (3.1), (3.2), and (3.3) can be formulated into LFT form

in (1.3), where the exogenous disturbance w is [zr, Fs]T , the regulated output z

is [zs, zu]T , the measured output y is [zs, zu]T . The actuator input u is a scalar

because only one piezo actuator is used in the case the quarter table.

15



16 3. Quarter Table

Table 3.1: Symbol Meanings of The Quarter Table

Symbol Meaning

ms Sprung mass
mu Unsprung mass
Fs Force applying on the sprung mass
θ1 A passive component connecting mu and the platform
θ2 A passive component connecting mu and ms

θ3 A passive component connecting mu and the piezo actuator
zs Displacement of the sprung mass
zu Displacement of the unsprung mass
zr Displacement of the platform
za Displacement output of the piezo actuator
γ Transfer function from input voltage to the displacement (za - zs)

Figure 3.1: Quarter Table [12]
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3.2 Controller Design

3.2.1 Design of Ũ2

The annihilated output Ũ2 can be calculated from the inverse of P̂21 in (1.2).

3.2.2 Design of K1

The stabilizing controller K1 is constructed by MATLAB ncfsyn function, and

Kw1
1 and Kw2

1 are shown in Appendix (A.1) and (A.2).

3.3 Simulation

After LFT form of the equations of motion is derived, the numerical model can be

calculated by substituting all values in Table 3.2. Note that the passive components

θj is the combination of a linear spring kj and a damper cj , where j = 1, 2, 3.

Then we can generate two disturbances to simulate the vibrational situation. The

disturbances w are given in equation (3.4) (3.5) and also shown in Figure 3.3.

I plot the frequency response of the open-loop system and find that the transfer

function Tu→zr and Tu→Fs in bode plot (shown in Figure 3.2) has maximum values

at around 12 and 13 Hz. Therefore, 12 and 13 Hz are chosen as the frequencies of

two disturbance signals.

zr = 0.0002sin(26πt) (unit : m)

Fs = 20sin(24πt) (unit : N)

(3.4)

(3.5)

First, we observe the open-loop system of the quarter table, as shown in

Figure 3.4.

The closed-loop system constructed by designing Ũw1
2 , Ũw2

2 , Kw1
1 , and Kw2

1 has

the following corresponding annihilated outputs ỹw1 , ỹw2 , as shown in Figure 3.5.

Also, because the purpose of the piezo actuator is to reduce the exogenous

signal w, its output response matters in my simulation, as shown in Figure 3.6.
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Table 3.2: Parameters in The Quarter Table

Symbol Value Unit

ms 19.0322 kg
mu 11.5250 kg
c1 373.558 Ns/m
c2 289.247 Ns/m
c3 446.353 Ns/m
k1 2.435 84 × 105 N/m
k2 2.022 63 × 105 N/m
k3 5.815 08 × 105 N/m
γ 0.0005662

s+272.2

Figure 3.2: Bode Plot Of The Quarter Table

Figure 3.3: Exogenous Disturbances
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Figure 3.4: Outputs of An Open-loop System

Figure 3.5: Annihilated Outputs

Figure 3.6: Response of One Piezo Actuator
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Figure 3.7: Regulated Outputs of Open- and Closed-loop System.

In my simulation, the maximum amplitude of (za − zs) is approximately 550

µm.

3.3.1 Vibration Reduction

The importance of my research is to reduce the regulated outputs z = [zs, zu]T , so,

here, I compare the open-loop and closed-loop system in Figure 3.7.

For the duration from 100 to 120 seconds, the vibration reduction is significant

when both controllers are open.
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Table 3.3: Vibration Reduction of zs

Kw1
1 off Kw1

1 open

Kw2
1 off NA 46.7%

Kw2
1 open 7.66% 63.0%

Table 3.4: Vibration Reduction of zu

Kw1
1 off Kw1

1 open

Kw2
1 off NA 35.5%

Kw2
1 open 7.08% 47.2%
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Chapter 4

Half Table

4.1 Dynamics Equations

A half-table model is used to study the dynamics of an optical table [1, 17].

Figure 7.2 illustrates the free body diagram, and its corresponding equations of

motion can be derived as:

msz̈s = Fs − up1 − up2 (4.1)

Iϕz̈ϕ = Tϕ − up1l1 + up2l2 (4.2)

mu1 z̈u1 = up1 − θ11(zu1 − zr1) (4.3)

mu2 z̈u2 = up2 − θ12(zu2 − zr2) (4.4)

where up1 and up2 are defined as:

up1 = θ21(zs + l1zϕ − zu1) + θ31(za1 − zu1) (4.5)

up2 = θ22(zs − l2zϕ − zu2) + θ32(za2 − zu2) (4.6)

23
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Figure 4.1: Half Table [12]

where each parameter is defined in Table 7.1. And the displacement output of

za can be substituted by the transfer function γ:

za1 − zs − l1zϕ = γu1 (4.7)

za2 − zs + l2zϕ = γu2 (4.8)

Then, the above equations can be formulated into LFT form described in (1.3),

where the signals w, z, u, y are defined in Table 4.2.

4.2 Controller Design

4.2.1 Design of Ũ2

The annihilated output Ũ2 can be calculated from the inverse of P̂21 in (1.2).

4.2.2 Design of K1

The stabilizing controller K1 is constructed by MATLAB ncfsyn function, and

Kw1
1 , Kw2

1 , Kw3
1 and Kw4

1 are shown in Appendix from (A.3) to (A.6).
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Table 4.1: Symbol Meanings of The Half Table

Symbol Meaning

ms Sprung mass
mu Unsprung mass
Fs Force applying on the sprung mass
θ1j A passive component connecting mu and the platform, where j = 1, 2
θ2j

A passive component connecting mu and ms, where j = 1, 2
θ3j

A passive component connecting mu and the piezo actuator, where j = 1, 2
zs Displacement of the sprung mass
zuj Displacement of the unsprung mass, where j = 1, 2
zrj

Displacement of the platform, where j = 1, 2
zaj

Displacement output of the piezo actuator, where j = 1, 2
γj Transfer function from input voltage to the displacement (zaj

- zs)

Table 4.2: Signal Representation of The Half Table

Symbol Signal Representation

Exogenous disturbance w [zr1 , zr2 , Fs, Tϕ]T

Regulated output z [zs, zϕ, zu1 , zu2 ]T

Actuator input u [u1, u2]T

Measured output y [zs, zϕ, zu1 , zu2 ]T

Table 4.3: Parameters in The Half Table

Symbol Value Unit

ms 10.8090 kg
mu1 9.451 kg
mu2 12.630 kg
c1j 373.558 Ns/m
c2j

289.247 Ns/m
c3j

446.353 Ns/m
k1j 2.435 84 × 105 N/m
k2j 2.022 63 × 105 N/m
k3j

5.815 08 × 105 N/m
l1 0.225 m
l2 0.225 m
γ 0.0005662

s+272.2
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Figure 4.2: Bode Plot Of The Half Table

4.3 Simulation - Maximize The Vibration Reduction

without Constrained Stroke of Piezo Actuator

Note: We assume that the output of PZT is unlimited in this section.

After LFT form of the equations of motion is derived, the numerical model can

be calculated by substituting all values in Table 7.3. Then we can generate some

disturbances to simulate the vibrational situation. The disturbances w are given in

equation (4.9), (4.10), (4.11) and (4.12) and also shown in Figure 4.3.



zr1 = 0.0001sin(4.10πt) (unit : m)

zr2 = 0.0001sin(6.72πt) (unit : m)

Fs = 10sin(9.04πt) (unit : N)

Tϕ = sin(5.90πt) (unit : N ∗ m)

(4.9)

(4.10)

(4.11)

(4.12)

First, we observe the open-loop system of the half table, as shown in Figure 4.4.
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Figure 4.3: Exogenous Disturbances

Figure 4.4: Outputs of An Open-loop System
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Figure 4.5: Annihilated Outputs

Figure 4.6: Response of Piezo Actuators

The closed-loop system constructed by designing Ũwi

2 , and Kwi

1 , where i =

1, 2, 3, 4, has the following corresponding annihilated outputs ỹwi , as shown

in Figure 4.9.

Also, because the purpose of the piezo actuator is to reduce the exogenous

signal w, its output response matters in my simulation, as shown in Figure 4.10.

In my simulation, if only the steady state is considered, it can be observed that

the maximum amplitude of (za − zs) is approximately 330 and 135 µm for the first

and second piezo actuator, respectively.
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Figure 4.7: Regulated Outputs of Open- and Closed-loop System.

4.3.1 Vibration Reduction

The importance of my research is to reduce the regulated outputs z, so, here, I

compare the open-loop and closed-loop system in Figure 4.7.

For the duration from 130 to 150 seconds, the vibration reduction is significant

when four controllers are open. See Table 4.4 for more details.

4.4 Simulation - Maximize The Vibration Reduction

with Limited Stroke of Piezo Actuator

Note: The output of PZT in this section is limited.

After LFT form of the equations of motion is derived, the numerical model can

be calculated by substituting all values in Table 7.3. Then we can generate some

disturbances to simulate the vibrational situation. The disturbances w are given in

equation from (4.13) to (4.16) and also shown in Figure 4.8.
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Figure 4.8: Exogenous Disturbances (Limited Piezo Actuators)



zr1 = 0.0003sin(1.8πt) (unit : m)

zr2 = 0.0003sin(2.8πt) (unit : m)

Fs = 8sin(10.0πt) (unit : N)

Tϕ = sin(5.90πt) (unit : N ∗ m)

(4.13)

(4.14)

(4.15)

(4.16)

The closed-loop system constructed by designing Ũwi

2 , and Kwi

1 , where i =

1, 2, 3, 4, has the following corresponding annihilated outputs ỹwi , as shown

in Figure 4.9.

Also, because the purpose of the piezo actuator is to reduce the exogenous

signal w, its output response matters in my simulation, as shown in Figure 4.10.

In my simulation, if only the steady state is considered, it can be observed that

the maximum amplitude of (za − zs) is approximately 123 and 144 µm for the first

and second piezo actuator, respectively.

4.4.1 Vibration Reduction

The importance of my research is to reduce the regulated outputs z, so, here, I

compare the open-loop and closed-loop system in Figure 4.11.
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Table 4.4: Vibration Reduction of The Regulated Outputs

zs zϕ zu1 zu2

only Kw1
1 open 2.15% 2.52% -0.04% 0.06%

only Kw2
1 open 4.80% 2.30% 0.85% 5.17%

only Kw3
1 open 4.08% 4.97% 14.1% 15.3%

only Kw4
1 open 10.2% 10.2% 0.44% 1.90%

All Kwi

1 open (i = 1, 2, 3, 4) 23.0% 21.5% 15.6% 24.0%

Figure 4.9: Annihilated Outputs (Limited Piezo Actuators)

Figure 4.10: Response of Piezo Actuators (Limited Piezo Actuators).
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Figure 4.11: Regulated Outputs of Open- and Closed-loop System (Limited Piezo

Actuators).

For the duration from 130 to 150 seconds, the vibration reduction is significant

when four controllers are open. See Table 4.5 for more details.
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Table 4.5: Vibration Reduction of The Regulated Outputs (Limited Piezo Actua-

tors).

zs zϕ zu1 zu2

only Kw1
1 open 0.92% 1.13% -0.03% 0.00%

only Kw2
1 open 2.65% 2.39% 0.01% 0.32%

only Kw3
1 open 0.32% 0.27% 5.45% 4.08%

only Kw4
1 open 3.94% 3.30% 0.49% 2.19%

All Kwi

1 open (i = 1, 2, 3, 4) 8.03% 7.27% 5.96% 6.71%
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Chapter 5

Full Table

5.1 Dynamics Equations

A full-table model is used to study the dynamics of an optical table [1, 17]. Fig-

ure 5.1 illustrates the free body diagram, and its corresponding equations of motion

can be derived as:

msz̈s = Fs − up1 − up2 − up3 − up4 (5.1)

Iθz̈θ = Tθ + up1lf + up2lf − up3lr − up4lr (5.2)

Iϕz̈ϕ = Tϕ − up1tf + up2tf − up3tr + up4tr (5.3)

mu1 z̈u1 = up1 − Fr1 (5.4)

mu2 z̈u2 = up2 − Fr2 (5.5)

mu3 z̈u3 = up3 − Fr3 (5.6)

35
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mu4 z̈u4 = up4 − Fr4 (5.7)

where upj
, Frj

, and Dj (j = 1, 2, 3, 4) are defined as:

upj
= θ2j

Dj + θ3j
(zaj

− zuj
) (5.8)

Frj
= θ1j

(zuj
− zrj

) (5.9)

D1 = zs − lfzθ + tfzϕ − zu1 (5.10)

D2 = zs − lfzθ − tfzϕ − zu2 (5.11)

D3 = zs + lrzθ + trzϕ − zu3 (5.12)

D4 = zs + lrzθ − trzϕ − zu4 (5.13)

where each parameter is defined in Table 5.1. And the displacement output of

zaj
can be substituted by the transfer function γ:

za1 − zs + lfzθ − tfzϕ = γu1 (5.14)

za2 − zs + lfzθ + tfzϕ = γu2 (5.15)

za3 − zs − lrzθ − trzϕ = γu3 (5.16)

za4 − zs − lrzθ + trzϕ = γu4 (5.17)

Then, the above equations can be formulated into LFT form described in (1.3),

where the signals w, z, u, y are defined in Table 5.2.
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Figure 5.1: Full Table [12]

Table 5.1: Symbol Meanings of The Full Table

Symbol Meaning

ms Sprung mass
mu Unsprung mass
Fs Force applying on the sprung mass
θ1j

A passive component connecting mu and the platform, where j = 1, 2
θ2j

A passive component connecting mu and ms, where j = 1, 2
θ3j A passive component connecting mu and the piezo actuator, where j = 1, 2
zs Displacement of the sprung mass
zu Displacement of the unsprung mass
zr Displacement of the platform
za Displacement output of the piezo actuator
γ Transfer function from input voltage to the displacement (za - zs)

CHECKED!!! to be checked !!!!!!!!!

Table 5.2: Signal Representation of The Full Table

Symbol Signal Representation

Exogenous disturbance w [Fs, Tθ, Tϕ, zr1 , zr2 , zr3 , zr4 ]T

Regulated output z [zs, zθ, zϕ, zu1 , zu2 , zu3 , zu4 ]T

Actuator input u [u1, u2, u3, u4]T

Measured output y [z̈s, z̈θ, z̈ϕ, D1, D2, D3, D4]T
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5.2 Controller Design

5.2.1 Design of Ũ2

The annihilated output Ũ2 can be calculated from the inverse of P̂21 in (1.2).

5.2.2 Design of K1

The stabilizing controller K1 is constructed by MATLAB ncfsyn function, and

Kwi

1 (i = 1, 2, 3, 4, 5, 6, 7) are shown in Appendix from (A.7) to (A.13).

5.3 Simulation

After LFT form of the equations of motion is derived, the numerical model can

be calculated by substituting all values in Table 5.3. Then we can generate some

disturbances to simulate the vibrational situation. The disturbances w are given in

equation from (5.18) to (5.24) and also shown in Figure 5.2.



Fs = 10000sin(πt) (unit : N)

Tϕ = 1000000sin(2πt) (unit : N ∗ m)

Tϕ = 3000000sin(3πt) (unit : N ∗ m)

zr1 = 1.9sin(2.12πt) (unit : m)

zr2 = 2.1sin(2.42πt) (unit : m)

zr3 = 2.2sin(2.42πt) (unit : m)

zr4 = 2.3sin(2.30πt) (unit : m)

(5.18)

(5.19)

(5.20)

(5.21)

(5.22)

(5.23)

(5.24)

First, we observe the open-loop system of the full table, as shown in Figure 5.3.

The closed-loop system constructed by designing Ũwi

2 , and Kwi

1 , where i = 1,

2, 3, 4, 5, 6, 7, has the following corresponding annihilated outputs ỹwi , as shown

in Figure 5.4.
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Figure 5.2: Exogenous Disturbances

Table 5.3: Parameters in The Full Table

Symbol Value Unit

ms 19.0322 kg
mu 11.5250 kg
c1 373.558 Ns/m
c2 289.247 Ns/m
c3 446.353 Ns/m
k1 2.435 84 × 105 N/m
k2 2.022 63 × 105 N/m
k3 5.815 08 × 105 N/m

Others other parameters in full table ? ???
γ 0.0005662

s+272.2
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Figure 5.3: Outputs of An Open-loop System

Figure 5.4: Annihilated Outputs
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Figure 5.5: Response of Piezo Actuators

Also, because the purpose of the piezo actuator is to reduce the exogenous

signal w, its output response matters in my simulation, as shown in Figure 5.5.

In my simulation, if only the steady state is considered, it can be observed that

the maximum amplitude of (za − zs) are approximately 3 × 10−8 meter for all four

piezo actuators.

5.3.1 Vibration Reduction

The importance of my research is to reduce the regulated outputs z, so, here, I

compare the open-loop and closed-loop system in Figure 5.6.

For the duration from 425 to 450 seconds, the vibration reduction is significant

when seven controllers are open.
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Figure 5.6: Regulated Outputs of Open- and Closed-loop System.

Table 5.4: Vibration Reduction of The Regulated Outputs

zs zθ zϕ zu1 zu2 zu3 zu4

only Kw1
1 open 21.4% 0.04% 0.0% 0.38% 0.52% -0.04% -0.02%

only Kw2
1 open 1.59% 61.3% 0.0% 0.05% 0.03% 1.32% 1.22%

only Kw3
1 open 0.0% 0.0% 25.8% -0.76% -0.60% -0.59% -0.59%

only Kw4
1 open 7.42% 0.61% 3.69% 2.48% 0.07% 0.21% -0.27%

only Kw5
1 open 10.6% 0.74% 2.94% 0.14% 2.58% -0.06% 0.15%

only Kw6
1 open 5.19% 0.95% 3.13% 0.04% 0.16% 2.19% 0.45%

only Kw7
1 open 0.27% 1.09% 6.01% 0.42% -0.23% -0.41% 2.23%

all Kwi

1 open 54.4% 70.3% 50.3% 2.69% 2.55% 2.64% 3.14%
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Disturbance Response Decoupling

6.1 General Control Configuration

Previously, a decoupling method proposed by Wang [16] incorporated the robust

control method to the linear fractional transformation (LFT), and the closed-loop

transfer function from one specific disturbance to the regulated outputs was fixed.

That is, the controller was designed to improve the regulated outputs from the

system excited by other disturbances. However, the number of disturbance sets

should be expanded into higher-dimensional form if the system can be excited

by more discurbances. Because of the limitations of multivariable control of

LFT, it becomes necessary to modify the original algorithm. Therefore, input

disturbance response decoupling (IDRD) is proposed to improve the regulated

outputs z from the system excited by one disturbance ω1. In other words, our IDRD

for multivariable control of LFT provides a decouping scheme for the improvement

from one excitation of the system, and other disturbances have no effects on the

control signals.

Consider an open-loop plant G = P11, which is the transfer function from

the disturbances ω to the regulated outputs z, as shown in Figure 6.1. Also,

consider a generalized plant P in terms of linear fractional transformation (LFT)

of a controller K as shown in Figure 6.2. Because of the analysis of closed-loop

43
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Figure 6.1: Open-loop System

Figure 6.2: General Control Configuration

Figure 6.3: Closed-loop System



6.2. Review of Controller Parameterization 45

performance given the controller, we merge K into the interconnection structure

and obtain the system H = Fl(P, K) as shown in Figure 6.3.

6.2 Review of Controller Parameterization

Controller parameterization is a fundamental problem in control theory. If the set

of stabilizing controllers for a given plant is parameterized, then the parameters

of the controllers become a function of a single variable. In this section, we will

review some techniques for controller parameterization. z

y

 =

 P11 P12

P21 P22


 w

u

 (6.1)

Suppose the generalized plant P is stabilizable. Since P11, P12, P21, and P22

defined in (6.1) share the same unstable poles [18] [19], it can be proved that the

stabilizing controller K is an internally-stabilizing controller for P if and only if

K is an internally-stabilizing controller for P22. Let P22 = NM−1 = M̃−1Ñ be

the right and left coprime stable rational matrix of P22 and X̃ −Ỹ

−Ñ M̃


 M Y

N X

 =

 I 0

0 I

 (6.2)

be the corresponding Bezout identities, where all matrices in (6.2) belong to RH∞,

and the set of all stabilizing controllers which stabilizes P22 and P are given by

K = Fl(K0, Q), Q ∈ RH∞ (6.3)

where

K0 =

 X̃−1Ỹ −X̃−1

X−1 X−1N

 . (6.4)

Since the closed-loop transfer function H is

H = Fl(P, K) = P11 + P12K(I − P22K)−1P21, (6.5)
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we have

H = T1 − T2QT3 (6.6)

where

K(I − P22K)−1 = (Y − MQ)M̃, (6.7)

T1 = P11 + P12Y M̃P21 (6.8)

T2 = P12M (6.9)

T3 = M̃P21 (6.10)

which is an affine parameterization of all internally-stable closed-loop systems.

6.3 Input Disturbance Response Decoupling (IDRD)

Definition 1. Assume that an open-loop system G = P11 is stable in (6.1) shown

in Figure 6.1. Also, consider a generalized plant P excited by the n disturbances,

namely ω = [ω1, ω2, ..., ωn]T . If the controller K shown in Figure 6.2 improves

the closed-loop Hω1→z without changing other Hωj→z, where j = 2, 3, ..., n, that

is, if the response can be decoupled from one input disturbance, then we call this

control method Input Disturbance Response Decoupling (IDRD).

Now, the objective of this section is to derive IDRD to improve the outputs

from the system excited by one specific disturbances. In the following sections, we

are going to see how IDRD improves Hω1→z and how IDRD keeps other Hωj→z

the same.

6.3.1 Q-Parameterization (Youla)

A parameterization of all stabilizing controllers for the plant P(s) is given by [20],

[16]

K = (Y − MQ)(X − NQ)−1 (6.11)
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= (X̃ − QÑ)−1(Ỹ − QM̃) (6.12)

where Q is any stable transfer function and all matrices in (6.11) and (6.12) satisfy

the Bezout identities (6.2) for the left and right coprime factorization.

The Q-parameterization is useful for controller synthesis [20]. First of all, the

search over all K’s is replaced by a search over stable Q’s. Besides, all closed-loop

transfer functions is in the form of (6.6), so they are affine in Q. This further

simplifies the optimization problem.

Example 6.3.1. In (6.6), we can see Q parameterization. Once Q is determined,

a corresponding controller K can be found by setting M = M̃ = I, N = Ñ =

P22, X = X̃ = I , and Y = Ỹ = 0. Then we have

K = −(I − QP22)−1Q (6.13)

Theorem 6.3.1. Consider a stabilizable generalized plant P in the configuration

of (6.1) and Figure 6.2. All stabilizing controllers K is designed in the form of

(6.11) and (6.12) with Q in (6.14) such that Hωj→z1 = Gωj→z1 .

V1

V2

V3
...

Vm


Q =



Q11

−Q22Ũ2 + ∑n
j=1 Q2jŨj

−Q33Ũ3 + ∑n
j=1 Q3jŨj

...

−QmnŨn + ∑n
j=1 QmjŨj


(6.14)

Where j = 2, 3, ..., n, n is the number of exogenous disturbances, and m is the

number of regulated outputs. Also, U and V are unimodular matrices, where

U =
(

U1, U2, ..., Un

)
(6.15)

V T =
(

V1, V2, ..., Vm

)
(6.16)

, and

ŨT = U−T =
(

Ũ1, Ũ2, ..., Ũn

)
(6.17)

Ṽ = V −1 =
(

Ṽ1, Ṽ2, ..., Ṽm

)
. (6.18)
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Proof. Wang [16] has proved that for any polynomial matrix T ∈ RH∞, there

exists a left normalrank fatorization (lnf) and a right normalrank fatorization (rnf)

of T . Therefore, T2 and T3 in (6.6) can be factorized as follows:

T2j = EVj (6.19)

T3j = UjF (6.20)

Suppose M = T2QT3. Now we are going to prove Mωj→z1 = 0 if and only if the

parameterization of Q in (6.14) is satisfied.

First, suppose that Mωj→z1 = 0. By substituting (6.19) and (6.20) into Mωj→z1 ,

we have

EjVjQUjFj = 0 (6.21)

where j = 2, 3, ..., n. Because E has full column normalrank, and because F has

full row normalrank, (6.21) is equivalent to (6.22).

VjQUj = 0 (6.22)

Thus, we have the following form:

V2Q
(

U1, U2, ..., Un

)
=

(
Q21, 0, Q23, ..., Q2n

)
(6.23)

V3Q
(

U1, U2, ..., Un

)
=

(
Q31, Q32, 0, ..., Q3n

)
(6.24)

VmQ
(

U1, U2, ..., Un

)
=

(
Qm1, Qm2, Qm3, ..., 0

)
(6.25)

Suppose V1Q = Q11. Then we have proven the Q parameterization expressed in

(6.14).

Now, we want to prove this in the opposite direction. Suppose we have known

the expression of Q in (6.14). Then intuitively (6.22) holds. Then we can multiply

some lnf and rnf to get the result, same as in (6.21). Therefore, we have proven

Mωj→z1 = 0 as a result for j = 2, 3, ..., n. ■
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Theorem 6.3.2. Consider a stabilizable generalized plant P in the configuration

of (6.1) and Figure 6.2. All stabilizing controllers K is designed in the form of

(6.11) and (6.12) with Q in (6.26) such that Hωj→z1 = Gωj→z1 . V1

V̂2

 Q =

 Q11

Q̂2Ũ

 (6.26)

Where V̂2 = [V2, V3, ..., Vm]T , Ũ = [Ũ1, Ũ2, · · · , Ũn]T , and

Q̂2 =



Q21 0 Q23 · · · Q2m

Q31 Q32 0 · · · Q3m

...
...

Qm1 Qm2 Qm3 · · · 0


(6.27)

Proof. Here, we factorize the submatrix of (6.14) to generalize Theorem 6.3.1.

Q̂2Ũ =



−Q22Ũ2 + ∑n
j=1 Q2jŨj

−Q33Ũ2 + ∑m
j=1 Q3jŨj

...

−QmnŨn + ∑n
j=1 QmjŨj


(6.28)

Because there are more entries in Q̂2 than ones in Ũ , it is possible to find Q̂2 such

that U = Ũ−1 is also unimodular. Then, in a similar way, we can prove that all

stabilizing controllers K can be designed in the form of (6.11) and (6.12) with Q

in (6.26) if and only if Hωj→z1 = Gωj→z1 . ■

6.3.2 Decoupling Effect

Theorem 6.3.3. Let the open-loop system G = P11 is stable. Assume K0 in (6.4)

is zero. There exists Ũ1 ∈ RH∞ such that all stabilizing controllers requiring

Hωj→z = Gωj→z, where j = 2, 3, ..., n, can be parameterized as

K = −(I − Q̂2Ũ1P22)−1Q̂2Ũ1 (6.29)

for Q̂2 ∈ RH∞, where Uj , is defined in (6.20), and Ũ is defined in (6.17).
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Figure 6.4: Control Structure of IDRD

Figure 6.5: Control Structure of IDRD
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Proof. By substituting Q = Q̂2Ũ1 into (6.13), then we get the result of (6.29). ■

Theorem 6.3.4. Let the open-loop system G = P11 is stable. Assume K0 in

(6.4) is zero. Let Uj, j = 2, 3, ..., n be defined in Theorem 6.3.3. Then we have

K = K1Ũ1, where K1 is a stabilizing controller for Ũ1P22.

Proof. In Section 6.2, we conclude that K stabilizes P if and only if K stabilizes

P22. Apparently, it implies that K1 stabilizes P + if and only if K1 stabilizes Ũ1P22,

where P + is defined in Figure 6.5. ■

Theorem 6.3.5. Let the open-loop system G = P11 is stable. Assume K0 in (6.4)

is zero. Also consider the control configuration in Figure 6.6 with generalized

plant P given by (6.1). If the design of Ũ1 satisfies (6.30), where Ũ1 is defined in

(6.15) and (6.17), then the closed-loop Hωj→z remains the same as the open-loop

Gωj→z, where j = 2, 3, ..., n.

Ũ = P −1
21 (6.30)

Proof. From (6.5), the close-loop system Hω→z in Figure 6.6 can be rearranged

as:

Hω→z = P11 + P12(I − K1Ũ1P22)−1K1Ũ1P21 (6.31)

If ŨP21 = I , then

R = ŨP21 =



Ũ1

Ũ2
...

Ũm


P21 =



1 0 0 · · · 0

0 1 0 · · · 0
...

...

0 0 0 · · · 1


=



r1

r2
...

rm


(6.32)

where each row vector rj has zero entries except for the j-th entry (rjj = 1). If we

take Ũ1, then (6.31) can be simplified into

Hω→z = P11 + P12(I − K1Ũ1P22)−1K1r1 (6.33)

which means that Hω1→z will be changed, and that the other Hωj→z will be fixed.

■
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6.4 Output Disturbance Response Decoupling (ODRD)

Definition 2. Assume that an open-loop system G = P11 is stable in (6.1) shown

in Figure 6.1. Also, consider a generalized plant P has m regulated outputs,

namely z = [z1, z2, ..., zm]T . If the controller K shown in Figure 6.2 improves

the closed-loop Hω→z1 without changing other Hω→zj
, where j = 2, 3, ..., m,

that is, if each output of the system, which is excited by many disturbances, can

be individually discussed, then we call this control method Output Disturbance

Response Decoupling (ODRD).

Now, the objective of this section is to derive ODRD to improve single output

from the system excited by various disturbances. In the following sections, we are

going to see how ODRD improves Hω→z1 and how ODRD keeps other Hω→zj
the

same.

6.4.1 Q-Parameterization (Youla)

Lemma 6.4.1. Consider a stabilizable generalized plant P in the configuration

of (6.1) and Figure 6.2. All stabilizing controllers K is designed in the form of

(6.11) and (6.12) with Q in (6.34) such that Hω1→zj
= Gω1→zj

.

Q

 U1

Û2

 =

 Q11

Ṽ Q̂2

 (6.34)

Where Û2 = [U2, U3, ..., Un], Ṽ = [Ṽ1, Ṽ2, · · · , Ṽm], and

Q̂2 =



Q21 0 Q23 · · · Q2n

Q31 Q32 0 · · · Q3n

...
...

Qm1 Qm2 Qm3 · · · 0


(6.35)
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Figure 6.6: Control Structure of ODRD

Ṽ Q̂2 =



−Ṽ2Q22 + ∑m
j=1 ṼjQj2

−Ṽ3Q33 + ∑m
j=1 ṼjQj3

...

−ṼmQmm + ∑m
j=1 ṼjQjn


(6.36)

Proof. Because there are more entries in Q̂2 than ones in Ṽ , it is possible to find

Q̂2 such that V = Ṽ −1 is also unimodular. Then, in a similar way, we can prove

that all stabilizing controllers K can be designed in the form of (6.11) and (6.12)

with Q in (6.34) if and only if Hω1→zj
= Gω1→zj

. ■

6.4.2 Decoupling Effect

Theorem 6.4.2. Let the open-loop system G = P11 is stable. Assume K0 in (6.4)

is zero. There exists Ṽ1 ∈ RH∞ such that all stabilizing controllers requiring

Hω→zj
= Gω→zj

, where j = 2, 3, ..., m, can be parameterized as

K = −Ṽ1Q̂2(I − P22Ṽ1Q̂2)−1 (6.37)

for Q̂2 ∈ RH∞, where Vj , is defined in (6.19), and is defined in (6.18).

Proof. By substituting Q = Ṽ1Q̂2 into (6.13), then we get the result of (6.37). ■
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Figure 6.7: Control Structure of ODRD

Theorem 6.4.3. Let the open-loop system G = P11 is stable. Assume K0 in

(6.4) is zero. Let Vj, j = 2, 3, ..., m be defined in Theorem 6.4.2. Then we have

K = Ṽ1K1, where K1 is a stabilizing controller for P22Ṽ1.

Proof. In Section 6.2, we conclude that K stabilizes P if and only if K stabilizes

P22. Apparently, it implies that K1 stabilizes P + if and only if K1 stabilizes P22Ṽ1,

where P + is defined in Figure 6.7. ■

Theorem 6.4.4. Let the open-loop system G = P11 is stable. Assume K0 in (6.4)

is zero. Also consider the control configuration in Figure 6.6 with generalized

plant P given by (6.1). If the design of Ṽ1 satisfies (6.38), where Ṽ1 is defined in

(6.16) and (6.18), then the closed-loop Hω→zj
remains the same as the open-loop

Gω→zj
, where j = 2, 3, ..., m.

Ṽ = P −1
12 (6.38)

Proof. From (6.5), the close-loop system Hω→z in Figure 6.6 can be rearranged

as:

Hω→z = P11 + P12Ṽ1K1(I − P22Ṽ1K1)−1P21 (6.39)
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If P12Ṽ = I , then

C = P12Ṽ = P12

(
Ṽ1 Ṽ2 · · · Ṽm

)
=



1 0 0 · · · 0

0 1 0 · · · 0
...

...

0 0 0 · · · 1


=

(
c1 c2 · · · cm

)

(6.40)

where each column vector cj has zero entries except for the j-th entry (cjj = 1). If

we take Ṽ1, then (6.39) can be simplified into

Hω→z = P11 + c1K1(I − P22Ṽ1K1)−1P21 (6.41)

which means that Hω→z1 will be changed, and that the other Hω→zj
will be fixed.

■
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Chapter 7

Output DRD Applied to A Half Table

7.1 Output Disturbance Response Decoupling (ODRD)

Previously, we have derived disturbance response decoupling [16]. Now, we re-

name it as input disturbance response decoupling (IDRD) because the purpose of

IDRD is to fix the transfer function Tω1→z, and we pay attention to one specific

disturbance in this control structure. However, there is another issue to be consid-

ered: if there are many external disturbances from the environment, can we fix at

least one response? That is, no matter what the environmental disturbances are, the

system still has the same response z1. Therefore, it becomes necessary to derive

another decoupling form to improve the system response, and in this chapter, a

new objective is to fix the transfer function from all disturbances to one regulated

output z1. In the following pages, output disturbance response decoupling (ODRD)

will be introduced to fix the transfer function Tω→z1 .

 z

y

 =

 P11 P12

P21 P22


 w

u

 (7.1)

(open−loop)G = P11 =

 G1 G2

G3 G4

 ; (closed−loop)H =

 H1 H2

H3 H4


(7.2)

57
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Figure 7.1: Control Structure of ODRD

Definition 3. Let G be open-loop stable in (7.2) and in (7.1). Consider a right

annihilator of P12,1, namely Ṽ2, where P12,1 is [P12,11, P12,12, ..., P12,1n]T and n is

the number of actuators. The design of Ṽ2 is to fix Tω→z1 in a closed-loop system.

If (7.3) is satisfied, then we say we can fix the transfer function Tω→z1 , and this is

the spirit of output disturbance response decoupling (ODRD).

P12,1Ṽ2 = 0 (7.3)

Proof. The general form of ODRD should be proved here, but I haven’t finished it

yet. ■

Lemma 7.1.1. Consider a special case of (7.1) with a specific dimension, as shown

in Figure 7.1. Assume P11 ∈ R2×2, P12 ∈ R2×2, P21 ∈ R1×2,and P22 ∈ R1×2. Also,

consider Ṽ2 ∈ R2×1. To satisfy the condition in (7.3), Ṽ2 can be designed as

[−p12,12, p12,11]T W , where W is a weighting function and W ∈ R. Then, K1 ∈ R1

can be designed to stabilizes P22Ṽ2.

Proof. The closed-loop system in Figure 7.1 can be simplified into a transfer

function H from [ω1, ω2]T to [z1, z2]T described in (7.2), and we can derive H

from MATLAB symbolic expression, where H1, H2, H3, and H4 are described in

(7.4):
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H1 = G1 − 1
∆K1P21,1[P12,11, P12,12][Ṽ 1

2 , Ṽ 2
2 ]T (7.4)

H2 = G2 − 1
∆K1P21,2[P12,11, P12,12][Ṽ 1

2 , Ṽ 2
2 ]T (7.5)

H3 = G3 − 1
∆K1P21,1[P12,21, P12,22][Ṽ 1

2 , Ṽ 2
2 ]T (7.6)

H4 = G4 − 1
∆K1P21,2[P12,21, P12,22][Ṽ 1

2 , Ṽ 2
2 ]T (7.7)

Where

∆ = K1[P22,1, P22,2][Ṽ 1
2 , Ṽ 2

2 ]T − 1 (7.8)

To fix Tω→z1 , we have assumptions of G1 = H1 and G2 = H2. Obviously,

ODRD provides solutions for Ṽ2. In the next section, we will apply ODRD to a

half table by using this lemma with the same matrix dimension.

■

7.2 Dynamic Equations

A half-table model is used to study the dynamics of an optical table [1, 17].

Figure 7.2 illustrates the free body diagram, and its corresponding equations of

motion can be derived as:

msz̈s = Fs − up1 − up2 (7.9)

Iϕz̈ϕ = Tϕ − up1l1 + up2l2 (7.10)

mu1 z̈u1 = up1 − θ11(zu1 − zr1) (7.11)
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Figure 7.2: Half Table [12]

mu2 z̈u2 = up2 − θ12(zu2 − zr2) (7.12)

where up1 and up2 are defined as:

up1 = θ21(zs + l1zϕ − zu1) + θ31(za1 − zu1) (7.13)

up2 = θ22(zs − l2zϕ − zu2) + θ32(za2 − zu2) (7.14)

where each parameter is defined in Table 7.1. And the displacement output of

za can be substituted by the transfer function γ:

za1 − zs − l1zϕ = γu1 (7.15)

za2 − zs + l2zϕ = γu2 (7.16)

Then, the above equations can be formulated into LFT form. The next thing

to do is to simplify the half table problem. Because of the limitations of ODRD

described in Lemma 7.1.1, we suppose that the force Fs and torque Tϕ does not

exist. In the following simulation, we will only discuss a simplified case with two

disturbances from an uneven road, and all signals are defined in Table 7.2.
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Table 7.1: Symbol Meanings of The Half Table

Symbol Meaning

ms Sprung mass
mu Unsprung mass
Fs Force applying on the sprung mass
θ1j A passive component connecting mu and the platform, where j = 1, 2
θ2j

A passive component connecting mu and ms, where j = 1, 2
θ3j

A passive component connecting mu and the piezo actuator, where j = 1, 2
zs Displacement of the sprung mass
zuj Displacement of the unsprung mass, where j = 1, 2
zrj

Displacement of the platform, where j = 1, 2
zaj

Displacement output of the piezo actuator, where j = 1, 2
γj Transfer function from input voltage to the displacement (zaj

- zs)

Table 7.2: Signal Representation of A Simplified Half Table

Symbol Signal Representation

Exogenous disturbance w [zr1 , zr2 ]T

Regulated output z [zs, zϕ]T

Actuator input u [u1, u2]T

Measured output y zu1

Table 7.3: Parameters in The Half Table

Symbol Value Unit

ms 10.8090 kg
mu1 9.451 kg
mu2 12.630 kg
c1j 373.558 Ns/m
c2j

289.247 Ns/m
c3j

446.353 Ns/m
k1j 2.435 84 × 105 N/m
k2j 2.022 63 × 105 N/m
k3j

5.815 08 × 105 N/m
l1 0.225 m
l2 0.225 m
γ 0.0005662

s+272.2
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Figure 7.3: Exogenous Disturbances

7.3 Simulation

Note: The output of PZT in this section is unconstrained, i.e., the voltage u can be

maximized without considering the limitation of the PZT.

After LFT form of the equations of motion is derived, the numerical model can

be calculated by substituting all values in Table 7.3. Then we can generate some

disturbances to simulate the vibrational situation. The disturbances w are given in

equation (7.17) and (7.18) and also shown in Figure 7.3.

zr1 = 0.00011sin(6.6πt) (unit : m)

zr2 = 0.00010sin(12.0πt) (unit : m)

(7.17)

(7.18)

7.3.1 Controller Design

To fix Tω→z1 , we can design a transfer function Ṽ z1
2 by using Lemma 7.1.1. Also,

to fix Tω→z2 , we can design another Ṽ z2
2 . The stabilizing controller K1 can be

designed by using MATLAB command ncfsyn, and K1 is designed to stabilizes

P22Ṽ2.

In the following three sub-sections, we will discuss three different ODRD by fixing

Tω→z1 , Tω→z2 , and fixing both Tω→z1 and Tω→z2 .
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Figure 7.4: Response of Piezo Actuators (1st ODRD).

Figure 7.5: Regulated Outputs of Open- and Closed-loop System (1st ODRD).

7.3.2 First ODRD

First, we can observe the system response by fixing Tω→z1 . We can see control

signals for each actuator PZT in Figure 7.4 and system response in Figure 7.5.

Besides, in ODRD structure, we fix the transfer function Tω→z1 . In other words,

Tω→z2 might be changed, and it is possible that the vibrational pattern of the

regulated output z2 can be improved. Here, we observe the system response only

from 80 to 100 seconds, and the 2-norm of each regulated signal is calculated in

Table 7.4 and Table 7.5.
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Figure 7.6: Response of Piezo Actuators (2nd ODRD).

Figure 7.7: Regulated Outputs of Open- and Closed-loop System (2nd ODRD).

7.3.3 Second ODRD

Next, we are interested in fixing another transfer function, namely Tω→z2 . We can

see control signals for each actuator PZT in Figure 7.6 and system response in

Figure 7.7. Besides, the 2-norm of each regulated signal from 80 to 100 seconds is

calculated in Table 7.4 and Table 7.5.

7.3.4 Hybrid ODRD

Next, we are interested in fixing both transfer functions, i.e., both Tω→z1 and Tω→z2 .

We can see control signals for each actuator PZT in Figure 7.8 and system response
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Figure 7.8: Response of Piezo Actuators (Hybrid ODRD).

Figure 7.9: Regulated Outputs of Open- and Closed-loop System (Hybrid ODRD).

in Figure 7.9. Besides, the 2-norm of each regulated signal from 80 to 100 seconds

is calculated in Table 7.4 and Table 7.5.



66 7. Output DRD Applied to A Half Table

Table 7.4: Vibration Reduction of The Regulated Output zs.

zs 30 - 50 sec 55 - 75 sec 80 - 100 sec

only Ṽ z1
2 open 0% 0% 0%

only Ṽ z2
2 open 11.1% 6.2% 7.2%

Both Ṽ
zj

2 open (j = 1, 2) 15.1% 8.1% 9.6%

Table 7.5: Vibration Reduction of The Regulated Output zϕ.

zϕ 30 - 50 sec 55 - 75 sec 80 - 100 sec

only Ṽ z1
2 open 42.3% 27.9% 35.1%

only Ṽ z2
2 open 0% 0% 0%

Both Ṽ
zj

2 open (j = 1, 2) 35.9% 35.1% 35.5%



Chapter 8

Input-Output DRD Applied to A

Half Table

8.1 Input-Output Disturbance Response Decoupling

(IODRD)

Previously, we have derived IDRD and ODRD, which are two algorithms de-

signed to fix Tω1→z and Tω→z1 , respectively. How about fixing Tω1→z1? It will be

interesting to observe the modification of a transfer function from one specific

input to another regulated output. In this chapter, a new algorithm is proposed:

Input-Output Disturbance Response Decoupling (abbreviated as IODRD), and the

objective is to fix Tω1→z1 .

Definition 4. Let G be open-loop stable in (7.2) and in (7.1). Consider a left

annihilator of P21,1, namely Ũ2, where P21,1 is [P21,11, P21,21, ..., P21,m1]T and m is

the number of measured outputs. The design of Ũ2 is to fix Tω1→z in a closed-loop

system. Besides, consider a right annihilator of P12,1, namely Ṽ2, where P12,1 is

[P12,11, P12,12, ..., P12,1n]T and n is the number of actuators. The design of Ṽ2 is to

fix Tω→z1 in a closed-loop system. If both (8.1) and (8.2) are satisfied, then we

say we can fix the transfer function Tω1→z1 , and this is the spirit of input-output

67
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Figure 8.1: Control Structure of IODRD

disturbance response decoupling (IODRD).

P12,1Ṽ2 = 0 (8.1)

Ũ2P21,1 = 0 (8.2)

Proof. The general form of IODRD should be proved here, but I haven’t finished

it yet. ■

Lemma 8.1.1. Consider a special case of (7.1) with a specific dimension, as

shown in Figure 8.1. Assume P11 ∈ R2×2, P12 ∈ R2×2, P21 ∈ R2×2,and P22 ∈

R2×2. Also, consider Ṽ2 ∈ R2×1 and Ũ2 ∈ R1×2. To satisfy two conditions, namely

(8.1) and (8.2), Ũ2 can be designed as [−p21,21, p21,11], and Ṽ2 can be designed as

[−p12,12, p12,11]T . Then, K1 ∈ R1 can be designed to stabilizes Ũ2P22Ṽ2.

Proof. The closed-loop system in Figure 8.1 can be simplified into a transfer

function H from [ω1, ω2]T to [z1, z2]T described in (7.2), and we can derive H

from MATLAB symbolic expression, where H1, H2, H3, and H4 are described in

(8.3):
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H1 = G1 − 1
∆[Ũ1

2 , Ũ2
2 ][P21,11, P21,21]T K1[P12,11, P12,12][Ṽ 1

2 , Ṽ 2
2 ]T (8.3)

H2 = G2 − 1
∆[Ũ1

2 , Ũ2
2 ][P21,12, P21,22]T K1[P12,11, P12,12][Ṽ 1

2 , Ṽ 2
2 ]T (8.4)

H3 = G3 − 1
∆[Ũ1

2 , Ũ2
2 ][P21,11, P21,21]T K1[P12,21, P12,22][Ṽ 1

2 , Ṽ 2
2 ]T (8.5)

H4 = G4 − 1
∆[Ũ1

2 , Ũ2
2 ][P21,12, P21,22]T K1[P12,21, P12,22][Ṽ 1

2 , Ṽ 2
2 ]T (8.6)

Where

∆ = K1[1, 1][P22 ◦ R][1, 1]T − 1 (8.7)

Where R = Ṽ2Ũ2 and the symbol ◦ is the hadamard product performing

element-wise multiplication.

■

In the next section, we will apply IODRD to a half table by using this Lemma 8.1.1

with the same matrix dimension.

8.2 Dynamic Equations

The equations of motion derived in Chapter 7 can be formulated into LFT form.

The next thing to do is to simplify the half table problem. Because of the limitations

of IODRD described in Lemma 8.1.1, we suppose that the force Fs and torque Tϕ

have no effect on the half table. In the following simulation, we will only discuss a

simplified case with two disturbances excited from an uneven road, and all signals

are defined in Table 8.1.
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Figure 8.2: Exogenous Disturbances

8.3 Simulation

Note: The output of PZT in this section is unconstrained, i.e., the voltage u can be

maximized without considering the limitation of the PZT.

After LFT form of the equations of motion is derived, we can generate some

disturbances to simulate the vibrational situation. The disturbances w are given in

equation (8.8) and (8.9) and also shown in Figure 8.2.

zr1 = 0.00011sin(6.6πt) (unit : m)

zr2 = 0.00010sin(12.0πt) (unit : m)

(8.8)

(8.9)

8.3.1 Controller Design

To fix Tω→z1 , we can design a transfer function Ṽ z1
2 by using Lemma 8.1.1. Also,

to fix Tω→z2 , we can design another Ṽ z2
2 . In addition, to fix Tω1→z, we can design

a transfer function Ũω1
2 . Also, to fix Tω2→z, we can design another Ũω2

2 The

stabilizing controller K1 can be designed by using MATLAB command ncfsyn,

and K1 is designed to stabilizes Ũ2P22Ṽ2.

In the following results, we will see how IODRD improves the regulated outputs z

by changing four transfer function Tωi→zj
, where i, j ∈ [1, 2]
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Figure 8.3: Response of Piezo Actuators (1st IODRD).

Figure 8.4: Regulated Outputs of Open- and Closed-loop System (1st IODRD).

8.3.2 First IODRD

First, we can observe the system response by modifying Tω2→z2 . We can see control

signals for each actuator PZT in Figure 8.3 and system response in Figure 8.4.

Besides, in the IODRD structure, other transfer functions are fixed, and only the

regulated output z2 is improved because IODRD modifies the transfer function

Tω2→z2 .
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Figure 8.5: Response of Piezo Actuators (2nd IODRD).

Figure 8.6: Regulated Outputs of Open- and Closed-loop System (2nd IODRD).

8.3.3 Second IODRD

Second, we can observe the system response by modifying Tω2→z1 . We can

see control signals for each actuator PZT in Figure 8.5 and system response in

Figure 8.6. Besides, in the IODRD structure, other transfer functions are fixed,

and only the regulated output z1 is improved because IODRD modifies the transfer

function Tω2→z1 .
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Figure 8.7: Response of Piezo Actuators (3rd IODRD).

Figure 8.8: Regulated Outputs of Open- and Closed-loop System (3rd IODRD).

8.3.4 Third IODRD

Third, we can observe the system response by modifying Tω1→z2 . We can see con-

trol signals for each actuator PZT in Figure 8.7 and system response in Figure 8.8.

Besides, in the IODRD structure, other transfer functions are fixed, and only the

regulated output z2 is improved because IODRD modifies the transfer function

Tω1→z2 .
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Figure 8.9: Response of Piezo Actuators (4th IODRD).

Figure 8.10: Regulated Outputs of Open- and Closed-loop System (4th IODRD).

8.3.5 Fourth IODRD

Last but not least, we can observe the system response by modifying Tω1→z1 . We

can see control signals for each actuator PZT in Figure 8.9 and system response in

Figure 8.10. Besides, in the IODRD structure, other transfer functions are fixed,

and only the regulated output z1 is improved because IODRD modifies the transfer

function Tω1→z1 .
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Table 8.1: Signal Representation of A Simplified Half Table

Symbol Signal Representation

Exogenous disturbance w [zr1 , zr2 ]T

Regulated output z [zs, zϕ]T

Actuator input u [u1, u2]T

Measured output y [zu1 , zu2 ]T

Table 8.2: Vibration Reduction of The Regulated Output zs.

zs 30 - 50 sec 55 - 75 sec 80 - 100 sec

1st IODRD 0% 0% 0%
2nd IODRD 0% 2.39% 1.84%
3rd IODRD 0% 0% 0%
4th IODRD 42.4% 0% 7.83%

Table 8.3: Vibration Reduction of The Regulated Output zϕ.

zϕ 30 - 50 sec 55 - 75 sec 80 - 100 sec

1st IODRD 0% 48.0% 19.1%
2nd IODRD 0% 0% 0%
3rd IODRD 4.04% 0% 2.10%
4th IODRD 0% 0% 0%
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Chapter 9

Conclusions

9.1 Conclusions

This research has explored the effectiveness of disturbance response decoupling

(DRD) strategies in the design and control of optical tables, emphasizing the critical

need for vibration control in precision applications. By introducing and validat-

ing the Input DRD (IDRD) approach, we have demonstrated that it significantly

decouples exogenous disturbances and reduces vibrations, enhancing the overall

performance of optical tables. Our findings indicate that while the original DRD

strategy effectively addresses specific disturbances, it requires modifications to

generalize the relationship between multiple disturbances and outputs.

Through the development of Output DRD (ODRD) and Input-Output DRD

(IODRD) strategies, we have laid the groundwork for a more comprehensive

approach to vibration control in optical tables. Simulation results underscore

the potential of these strategies to provide substantial improvements in stability

and performance. Overall, this work contributes valuable insights to the field of

vibration control, opening new avenues for optimizing the design and functionality

of optical systems.
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9.2 Future Work

Future research will focus on the experimental validation of the ODRD and IODRD

strategies. This will involve designing a series of experiments to systematically

evaluate their performance in real-world conditions, assessing their effectiveness in

various operational environments. Additionally, we aim to explore the integration

of advanced sensor technologies and adaptive control algorithms to further enhance

disturbance decoupling capabilities.

Another avenue for future work includes the expansion of the current models

to accommodate a wider range of disturbances, including environmental factors

that may impact optical table performance. Investigating the scalability of these

strategies to larger optical systems and different configurations will also be a key

focus, as will the potential application of machine learning techniques to predict

and mitigate disturbances dynamically.

Ultimately, this ongoing research seeks to refine vibration control methodolo-

gies, contributing to the advancement of optical technologies and their applications

in various scientific and industrial fields.



Appendix A

Design of Stabilizing Controller K1

This section shows all numerical values of my stabilizing controllers for quarter,

half, and full table.

A.1 Design of K1 - Quarter Table

Kw1
1 = 10s4 + 10000

s5 + 10s4 + 1000000 (A.1)

Kw2
1 = 10s4 + 10000

s5 + 10s4 + 1000000 (A.2)

A.2 Design of K1 - Half Table

Kw1
1 = 10s4 + 10000

s5 + 10s4 + 1000000 (A.3)

Kw2
1 = 10s4 + 10000

s5 + 10s4 + 1000000 (A.4)

Kw3
1 = 10s4 + 10000

s5 + 10s4 + 1000000 (A.5)

Kw4
1 = 10s4 + 10000

s5 + 10s4 + 1000000 (A.6)
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A.3 Design of K1 - Full Table

Kw1
1 = 10s4 + 10000

s5 + 10s4 + 1000000 (A.7)

Kw2
1 = 10s4 + 10000

s5 + 10s4 + 1000000 (A.8)

Kw3
1 = 10s4 + 10000

s5 + 10s4 + 1000000 (A.9)

Kw4
1 = 10s4 + 10000

s5 + 10s4 + 1000000 (A.10)

Kw5
1 = 10s4 + 10000

s5 + 10s4 + 1000000 (A.11)

Kw6
1 = 10s4 + 10000

s5 + 10s4 + 1000000 (A.12)

Kw7
1 = 10s4 + 10000

s5 + 10s4 + 1000000 (A.13)
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Device Specification
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Table B.1: Specification of The Vertical Vibration Machine

Specifications Parameters Units

Platform mass 14 kg
Loading limit 100 kg
Loading area 400×400 mm2

Working frequency 0.1-30 Hz
Maximum zcceleration 0.5g

Total stroke 0.4 m
Diameter of threads 25 mm

Screw pitch 10 mm/rev
Screw inertia 1.2 × 10−4 kg×m2

Output torque of the motor 4.9 / 20 (peak) N×m
Motor pulse 8192 pulse/rev
Rotor inertia 2.7 × 10−4 kg×m2

Table B.2: Specification of P-844.20, Physik Instrumente [3]

Specifications Parameters Units

Travel range from 0 to 100 V 30 µm
Push force capacity 3000 N
Pull force capacity 700 N

Resonant frequency f0 (no load) 12 kHz
Electrical capacitance 12 µF
Mass without cable 108 g

Length L 65 mm

Table B.3: Specification of E-663, Physik Instrumente [4]

Specifications Parameters Units

Channels 3
Input voltage -2 to 12 V

Minimum output voltage -20 to 120 V
Peak output power per channel 14 W

Voltage gain 10 ± 0.1
Input impedance 100 k Ω

Mass 4.6 kg



83

Table B.4: Specification of AVM35-HF-7, Akribis [13]

Specifications Parameters Units

Stroke 7.00 mm
Force sensitivity (at mid stroke) 16.00 N/A

Back EMF constant 16.00 V/m/s
Peak force 72 N
Inductance 3.95 mH

Continuous current 0.90 A
Peak current 4.50 A

Power at peak force 188.3 W

Table B.5: Specification of OPA544, Texas Instruments [14]

Specifications Parameters Units

Range of input voltage ± 6 V
Range of power supply ± 10 to ± 35 V

Maximum output current 2 A
Gain bandwidth 1.4 MHz
Open-loop gain 103 dB

Slew rate 8 V/ms

Table B.6: Specification of Accelerometer 731A/P31, Wilcoxon Research Inc. [7].

Specifications Parameters Units

Sensing element design PZT ceramic / flexture
Acceleration sensitivity, selectable 10, 100, 1000 V/g

Velocity sensitivity, selectable 0.1, 1, 10 V/in/sec
Vibration range, max 0.5 g peak

Transverse sensitivity, max 1% of axial
Noise 0.003 µg/

√
Hz

Frequency response (-3 dB) 0.05 - 100 Hz
Vibration limit 10g peak
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Table B.7: Specification of PR 750-050, Macro Sensors [9].

Specifications Parameters Units

Input voltage (nominal) 3.0 Vrms
Linearity error < ±0.25% of full scale output

Repeatability error < ±0.01% of full scale output
Nominal range ± 1.25 mm

Impedance, primary 400 Ω

Table B.8: Specification of LVC-2500, Macro Sensors [9].

Specifications Parameters Units

Manufacturer Macro Sensors
Type LVC-2500

Input sensitivity range 0.055 to 5.5 Vrms
Full scale outputs 0 to ± 10 V DC, 5 mA

Output Non-linearity < ±0.01% of full scale output
Frequency response (-3dB), selectable 250, 500 Hz

Table B.9: Specification of MLP-200, Transducer Techniques [11].

Specifications Parameters Units

Capacity 200 lb
Natural ringing frequency 5200 Hz

Deflection inches 0.003 inch

Table B.10: Specification of NI PCI-6259 [15].

Analog Input Analog Output

Analog input channels 16 SE / 8 DI Analog output channels 2
Nominal input ranges ±0.1, ±1, ±5, ±10 V Nominal output ranges ±5, ±10 V
Maximum input range ± 11 V Maximum output range ± 11 V

ADC resolution 16 bits DAC resolution 16 bits
Input impedance > 10 G Ω Output impedance 0.2 Ω
Input bias current ± 100 pA Current Drive ± 5 mA
Bandwidth (-3dB) 0.7 MHz
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Table B.11: Specification of NI PCIe-6323 [15].

Analog Input Analog Output

Analog input channels 32 SE / 16 DI Analog output channels 4
Nominal input ranges ±0.2, ±1, ±5, ±10 V Nominal output ranges ±10 V
Maximum input range ± 11 V Maximum output range ± 11 V

ADC resolution 16 bits DAC resolution 16 bits
Input impedance > 10 GΩ Output impedance 0.2 Ω
Input bias current ± 100 pA Current Drive ± 5 mA
Bandwidth (-3dB) 0.7 MHz
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