Robust Control – Final Project

µ-synthesis Design of A Half-Car Active Suspension System

Presenter: 王琮文

June 15, 2021

System Integration and Control Lab Department of Mechanical Engineering at National Taiwan University (NTU)

Outlines

Half-Car Model Passenger Model Hydraulic Actuator

Results

μ-synthesis

Structured Singular Value

Figure 17.4 System with structured uncertainty

Definition 17.1 For any given matrix $M \in \mathbb{C}^{n \times n}$, the structured singular value $\mu_{\Delta}(M)$ is defined as

$$\mu_{\Delta}(M) = \frac{1}{\min\{\sigma_{\max}(\Delta) \mid \Delta \in \Delta, \ \det(I - M\Delta) = 0\}}.$$
(17.10)
(17.10) when there is no $\Delta \in \Delta$ satisfying dot $(I - M\Delta) = 0$

 $\mu_{\Delta}(M) = 0$ when there is no $\Delta \in \Delta$ satisfying $\det(I - M\Delta) = 0$.

Structured Singular Value

Figure 17.4 System with structured uncertainty

17.3.1.1 Single Scalar Block Uncertainty $\Delta = \{ \delta I | \delta \in \mathbb{C} \}$

In this case, $\mu_{\Delta}(M) = \rho(M)$ holds. Here, $\rho(M)$ denotes the spectral radius of matrix M, that is, the maximum absolute value of all eigenvalues of M.

Proof. First, $\det(I - M\delta) = \det(\delta^{-1}I - M) \det(\delta I) = 0$ holds. So any nonzero δ^{-1} satisfying this equation is an eigenvalue of M. Then, it is easy to see that the reciprocal of the minimum size of uncertainty δ satisfying this equation is the spectral radius $\rho(M)$ of matrix M, that is,

$$\mu_{\Delta}(M) = \frac{1}{\min(|\delta| : \det(I - M\delta) = 0)}$$

5

Robust Stability and Robust Performance

Figure 8.2: $N\Delta$ -structure for robust performance analysis

- NS \Leftrightarrow N (internally) stable
- NP $\Leftrightarrow \bar{\sigma}(N_{22}) = \mu_{\Delta_P} < 1, \forall \omega, \text{ and NS}$
- RS $\Leftrightarrow \mu_{\Delta}(N_{11}) < 1, \forall \omega, \text{ and NS}$

$$\operatorname{RP} \quad \Leftrightarrow \quad \mu_{\widetilde{\Delta}}(N) < 1, \; \forall \omega, \; \widetilde{\Delta} = \begin{bmatrix} \Delta & 0 \\ 0 & \Delta_P \end{bmatrix}, \text{ and } \operatorname{NS}$$

$\boldsymbol{\mu}$ synthesis and DK-iteration

- ▶ $\max \rho(QN) \leq \mu(N) \leq \inf \overline{\sigma}(DND^{-1})$
- $\min_{K} (\min_{D \in \mathcal{D}} \|DN(K)D^{-1}\|_{\infty})$

DK-iteration

- 1. **K-step.** Synthesize an \mathcal{H}_{∞} controller for the scaled problem, $\min_{K} ||DN(K)D^{-1}||_{\infty}$ with fixed D(s).
- 2. **D-step.** Find $D(j\omega)$ to minimize at each frequency $\bar{\sigma}(DND^{-1}(j\omega))$ with fixed N.
- 3. Fit the magnitude of each element of $D(j\omega)$ to a stable and minimum phase transfer function D(s) and go to Step 1.

Problem Statement

Ride Comfort and Suspension Deflection

A Half-Car Active Suspension System

Ride Comfort and Suspension Deflection?

A Half-Car Active Suspension System

- ▶ In general,
 - $\ddot{X_s}$ represents ride comfort of a vehicle.

- ▷ $(X_{sf} X_{uf})$ represents the suspension deflection.
- ▷ $(X_{sr} X_{ur})$ represents the suspension deflection.

System Structure

Suspension System + Passenger Model + Hydraulic System

Overall Structure

A Half-Car Active Suspension System

Fig. 1. Half car 4 DOF active suspension model

Fig. 1. Half car 4 DOF active suspension model

Equations of motion

$$m_{s}\ddot{X}_{s} + c_{sf}(\dot{X}_{sf} - \dot{X}_{uf}) + k_{sf}(X_{sf} - X_{uf}) + c_{sr}(\dot{X}_{sr} - \dot{X}_{ur}) + k_{sr}(X_{sr} - X_{ur}) - f_{sf} - f_{sr} = 0$$
(1)

$$I_{s}\ddot{\Theta}_{s} + L_{f}\left[c_{sf}(\dot{X}_{sf} - \dot{X}_{uf}) + k_{sf}(X_{sf} - X_{uf}) - f_{sf}\right] - L_{r}\left[c_{sr}(\dot{X}_{sr} - \dot{X}_{ur}) + k_{sr}(X_{sr} - X_{ur}) - f_{sr}\right] = 0$$
(2)

$$m_{uf}X_{uf} - c_{sf}(X_{sf} - X_{uf}) - k_{sf}(X_{sf} - X_{uf}) + k_{uf}(X_{uf} - w_{sf}) + f_{sf} = 0$$
(3)

$$m_{ur}\ddot{X}_{ur} - c_{sr}(\dot{X}_{sr} - \dot{X}_{ur}) - k_{sr}(X_{sr} - X_{ur}) + k_{ur}(X_{ur} - w_{sr}) + f_{sr} = 0$$
(4)

Constraints

$$X_{s} = (L_{f}X_{sr} + L_{r}X_{sf}) / L$$

$$\Theta_{s} = (X_{sf} - X_{sr}) / L$$

- $\flat \quad \dot{x} = Ax + Bu$
- ▷ y = Cx + Du

Fig. 1. Half car 4 DOF active suspension model

$$x = \begin{bmatrix} \dot{x}_{sf} & \dot{x}_{uf} & \dot{x}_{sr} & \dot{x}_{ur} & x_{sf} & x_{uf} & x_{sr} & x_{ur} \end{bmatrix}^{T}$$
$$u = \begin{bmatrix} w_{sf} & w_{sr} & f_{sf} & f_{sr} \end{bmatrix}^{T}$$

Uncertain Biodynamics

Equations of motion

$$m_{H}\ddot{z}_{H} = -k_{H-UT}\left(z_{H} - z_{UT}\right) - c_{H-UT}\left(\dot{z}_{H} - \dot{z}_{UT}\right)$$
(1)

$$m_{UT}\ddot{z}_{UT} = k_{H-UT} \left(z_H - z_{UT} \right) - k_{UT-LT} \left(z_{UT} - z_{LT} \right) - k_{UT-T} \left(z_{UT} - z_T \right) + c_{H-UT} \left(\dot{z}_H - \dot{z}_{UT} \right) - c_{UT-LT} \left(\dot{z}_{UT} - \dot{z}_{LT} \right) - c_{UT-T} \left(\dot{z}_{UT} - \dot{z}_T \right)$$
(2)

$$m_{LT} \ddot{z}_{LT} = k_{UT-LT} \left(z_{UT} - z_{LT} \right) - k_{LT-T} \left(z_{LT} - z_{T} \right) + c_{UT-LT} \left(\dot{z}_{UT} - \dot{z}_{LT} \right) - c_{LT-T} \left(\dot{z}_{LT} - \dot{z}_{T} \right)$$
(3)

$$m_{T}\ddot{z}_{T} = k_{UT-T} \left(z_{UT} - z_{T} \right) + k_{LT-T} \left(z_{LT} - z_{T} \right) - k_{T-se} \left(z_{T} - z_{se} \right) + c_{UT-T} \left(\dot{z}_{UT} - \dot{z}_{T} \right) + c_{LT-T} \left(\dot{z}_{LT} - \dot{z}_{T} \right) - c_{T-se} \left(\dot{z}_{T} - \dot{z}_{se} \right)$$
(4)

$$m_{se} \ddot{z}_{se} = k_{T-se} \left(z_T - z_{se} \right) - k_{se} \left(z_{se} - z_p \right) + c_{T-se} \left(\dot{z}_T - \dot{z}_{se} \right) - c_{se} \left(\dot{z}_{se} - \dot{z}_p \right)$$
(5)

Xsr 1

Xur

Wsr

 $z_p = x_s + P_x \,\theta_s$

Figure 2: Hydraulic actuator block diagram

▶ Oil waft from the pump, $q_p = K_p \frac{dx}{dt}$

- ▶ Oil glide via the motor, $q_m = K_m \frac{d\theta}{dt}$
- $q_i = K_i P$ Leakage flow rate, ⊳
- ▶ Compressibility flow rate, $q_c = K_c \frac{dp}{dt}$

▶ Oil waft from the pump, $q_p = K_p \frac{dx}{dt}$

- ▶ Oil glide via the motor, $q_m = K_m \frac{d\theta}{dt}$
- $q_i = K_i P$ Leakage flow rate, ⊳
- Compressibility flow rate, ⊳

$$q_c = K_c \frac{dp}{dt}$$

$$K_{p}\frac{dx}{dt} = K_{m}\frac{d\theta}{dt} + K_{i}P + K_{c}\frac{dP}{dt}$$

- Assumptions:
 - ► Km = Kt = Kc
 - ► Tm = TI
 - ► Kc = 0
- Transfer function

$$\frac{\theta(s)}{X(s)} = \frac{K_p}{\left[\frac{K_i J}{K_m}s + \frac{K_m^2 + K_i B}{K_m}\right]}$$

⊳

Chain

Output Angular Displacment Ø

Motor

▶ purturbed
$$\widetilde{G_1(s)} = \frac{K_1}{T_1s+1}$$
 with multiplicative uncertainty

•
$$\widetilde{G_1} = G_1 (1 + W_{m1}\Delta_1)$$
, where $\|\Delta_1\|_{\infty} < 1$.

- K_1 : uncertainty of 10%
- T_1 : uncertainty of 20%

Car Chassis Hydraulic Actuator 0.3803s + 60.8973 Low Pressure Line Pump $W_{m1} =$ Motor Output Angular Displacment B *s* **+ 599.5829** High Pressure Line Wheel Assemb Approximation of the first actuator transfer function nt X -5 actuator block diagram -10 -15 Magnitude (dB) -20 -25 -30 $| (G1(j\omega) - G1nom(j\omega)) / G1nom(j\omega) |$ -35 Wm1(jω) | -40 10² 10^{3} 10⁴ 10¹ Frequency (rad/s)

Chair

Car Chassis Hydraulic Actuator Chair Low Pressure 0.3803s + 60.8973 Line $W_{m1} =$ Motor Output Angular Displacment @ *s* + 599.5829 High Pressure Line Wheel Assemb Approximation of the first actuator transfer function -5 actuator block diagram -10 -15 Magnitude (dB) -20 $G_1(s) = G_1(s)(1 + W_{m1}\Delta_1)$ -25 -30 $| (G1(j\omega) - G1nom(j\omega)) / G1nom(j\omega) |$ -35 Wm1(jω) | -40 10² 10^{3} 10^{4} 10¹ Frequency (rad/s)

From modeling to μ -synthesis design

State-Space

- Plant P
 - $\dot{x} = Ax + Bu$
 - y = Cx + Du

40

State-Space

• $\dot{x} = Ax + Bu$

•
$$y = Cx + Du$$

$$u^{T} = [w_{sf}, w_{sr}, f_{sf}, f_{sr}]$$

$$y^{T} = [(x_{sf} - x_{uf}), (x_{sr} - x_{ur}), \ddot{z_{H}}]^{x_{sr}} \xrightarrow{\text{Ims, Is}} \xrightarrow{I$$

hcar.StateName

v_sf

2 v_uf 3 v_sr 4 v_ur 5 x_sf 6 x_uf

7 x_sr 8 x_ur

9 Z_H 10 Z_UT 11 Z_LT 12 Z_T 13 Z_se 14 Z_H_dot 15 Z_UT_dot 16 Z_LT_dot

x =

State-Space

- $\dot{x} = Ax + Bu$
- y = Cx + Du

State-Space

Xsr 1

Xur

Wsr

ksr

$$u^{T} = [w_{sf}, w_{sr}, f_{sf}, f_{sr}]$$

$$y^{T} = [(x_{sf} - x_{uf}), (x_{sr} - x_{ur}), \dot{z_{H}}]$$

$$z^{T} = [(x_{sf} - x_{uf}), (x_{sr} - x_{ur})]$$

 $v^T = [\ddot{z_H}]$

Uncertainties

Uncertain continuous-time state-space model with 3 outputs, 4 inputs, 22 states. The model uncertainty consists of the following blocks:

C_H_UT: Uncertain real, nominal = 310, variability = [-15,15]%, 1 occurrences C_LT_T: Uncertain real, nominal = 330, variability = [-15,15]%, 1 occurrences C_T_se: Uncertain real, nominal = 2.48e+03, variability = [-15,15]%, 1 occurrences C_UT_LT: Uncertain real, nominal = 200, variability = [-15,15]%, 1 occurrences C_UT_T: Uncertain real, nominal = 909, variability = [-15,15]%, 1 occurrences C_se: Uncertain real, nominal = 150, variability = [-15,15]%, 1 occurrences Delta_act1: Uncertain 1x1 LTI, peak gain = 1, 1 occurrences Delta_act2: Uncertain 1x1 LTI, peak gain = 1, 1 occurrences K1: Uncertain real, nominal = 1.08, variability = [-10,10]%, 1 occurrences K2: Uncertain real, nominal = 1.08, variability = [-10,10]%, 1 occurrences T1: Uncertain real, nominal = 0.005, variability = [-20,20]%, 1 occurrences

Uncertainties

Uncerta The mo	Dampers in the Passenger Model	3 outputs, 4 inputs, 22 states. .ks [.]
C_H_U	JT: Uncertain real, nominal = 310, variability	y = [-15,15]%, 1 occurrences
C_LT_	T: Uncertain real, nominal = 330, variability	y = [-15,15]%, 1 occurrences
C_T_s	e: Uncertain real, nominal = 2.48e+03, vari	iability = [-15,15]%, 1 occurrences
C_UT_	LT: Uncertain real, nominal = 200, variability	ity = [-15,15]%, 1 occurrences
C_UT_	T: Uncertain real, nominal = 909, variability =	y = [-15,15]%, 1 occurrences
Delta_a	act1: Uncertain 1x1 L1I, peak gain = 1, 1 o	ccurrences
Delta_a	act2: Uncertain 1x1 LTI, peak gain = 1, 1 o	ccurrences
K1: Un	certain real, nominal = 1.08, variability = [-1	0,10]%, 1 occurrences
K2: Un	certain real, nominal = 1.08, variability = [-1	0,10]%, 1 occurrences
T1: Un	certain real, nominal = 0.005, variability = [-	-20,20]%, 1 occurrences
T2: Un	certain real, nominal = 0.005, variability = [-	-20,20]%, 1 occurrences

Uncertainties in Two Hydraulic Actuators

Robust performance			Fit order	
Iter	K Step	Peak MU	D Fit	D
1	2.46	0.2235	0.2278	42
2	0.2278	0.2256	0.2279	58
3	0.2279	0.2256	0.2278	56

 μ synthesis – Part 1

From w_{sf}

48

 u_{Δ}

w

u

μ synthesis – Part 2

v

Δ

P

K

Robust Performance

$$z^{T} = \left[\left(x_{sf} - x_{uf} \right), \left(x_{sr} - x_{ur} \right) \right]$$
$$v^{T} = \left[\ddot{x_{s}}, \ \ddot{Z_{H}} \right]$$

53

μ synthesis – Part 3

D-K ITERATION SUMMARY:

Robust performance				Fit orde	
Iter	K Step	Peak MU	D Fit	D	
1	2.46	0.2235	0.2277	40	
2	0.2277	0.2256	0.2277	UZ	
3	0.2277	0.2256	0.2278	50	
Deete					

Best achieved robust performance: 0.223

$$z^{T} = [(x_{sf} - x_{uf}), (x_{sr} - x_{ur})]$$

$$v^{T} = [\ddot{x_{s}}, \ddot{Z_{H}}]$$

 μ synthesis – Part 3 From W_{sf}

From W_{sr}

56

$$z^{T} = [(x_{sf} - x_{uf}), (x_{sr} - x_{ur}), \ddot{x_{s}}, \ddot{Z_{H}}]$$
$$v^{T} = [\ddot{x_{s}}, \ddot{Z_{H}}]$$

D-K ITERATION SUMMARY:

Robust performance				Fit order	
Iter	K Step	Peak Ml	J D Fit	D	
1	26.1	25.8	26.04	8	
2	26.04	25.8	26.09	20	
3	26.09	25.8	26.09	12	
Best achieved robust performance: 25.8					

$$z^{T} = [(x_{sf} - x_{uf}), (x_{sr} - x_{ur}), \ddot{x}_{s}, \ddot{Z}_{H}]$$
$$v^{T} = [\ddot{x}_{s}, \ddot{Z}_{H}]$$

 μ synthesis – Part 4 (samples = 100)

μ synthesis – Best Case

$$W_1(s) = \frac{0.72s}{s^2 + 7.2s + 5200}$$

(band-pass filter)

μ synthesis – Best Case

μ synthesis – Best Case

D-K ITERATION SUMMARY:

 $v^{T} = [(x_{sf} - x_{uf}), (x_{sr} - x_{ur})]$

	Robust performance			
lter	K Step	Peak Ml	J D Fit	D
1	2.46	0.301	0.3036	66
2	0.3036	0.301	0.3026	62
3	0.3026	0.301	0.3024	62

Best achieved robust performance: 0.301

μ synthesis – Best Case

 Δ

P

 u_{Δ}

 y_{Δ}

Conclusion

- achieves robust performance
- improves ride comfort
- improves suspension deflections

Conclusion

 This project establishes a robust feedback control synthesis for a class of half-car suspension systems considering a 4-DOF passenger's biodynamics with parametric uncertainties.

Reference

- Gandhi, Puneet & Sasidharan, Adarsh & Ramachandran, K.I. (2017). Performance Analysis of Half Car Suspension Model with 4 DOF using PID, LQR, FUZZY and ANFIS Controllers. Procedia Computer Science. 115. 2-13. 10.1016/j.procs.2017.09.070.
- 2. Gudarzi M, Oveisi A. Robust Control for Ride Comfort Improvement of an Active Suspension System considering Uncertain Driver's Biodynamics. Journal of Low Frequency Noise, Vibration and Active Control. 2014;33(3):317-339. doi:10.1260/0263-0923.33.3.17
- 3. Jibril, Mustefa (2020). H∞ and µ-synthesis Design of Quarter Car Active Suspension System. *International Journal of Scientific Research and Engineering Development* 3 (1):608-619. PhilArchive copy v1: https://philarchive.org/archive/JIBHAv1

Thanks for listening